On intersection of solvable Hall subgroups in finite simple exceptional groups of Lie type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 62-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that, if a Hall subgroup of an almost simple group whose socle is an exceptional group of Lie type is solvable, then there exist four groups conjugate to it whose intersection is trivial.
Keywords: almost simple group, base size, solvable Hall subgroup.
@article{TIMM_2013_19_3_a5,
     author = {E. P. Vdovin},
     title = {On intersection of solvable {Hall} subgroups in finite simple exceptional groups of {Lie} type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {62--70},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a5/}
}
TY  - JOUR
AU  - E. P. Vdovin
TI  - On intersection of solvable Hall subgroups in finite simple exceptional groups of Lie type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 62
EP  - 70
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a5/
LA  - ru
ID  - TIMM_2013_19_3_a5
ER  - 
%0 Journal Article
%A E. P. Vdovin
%T On intersection of solvable Hall subgroups in finite simple exceptional groups of Lie type
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 62-70
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a5/
%G ru
%F TIMM_2013_19_3_a5
E. P. Vdovin. On intersection of solvable Hall subgroups in finite simple exceptional groups of Lie type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 62-70. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a5/

[1] Passman D. S., “Groups with normal solvable Hall $p'$-subgroups”, Trans. Amer. Math. Soc., 123:1 (1966), 99–111 | MR | Zbl

[2] Zenkov V. I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl

[3] Dolfi S., “Large orbits in coprime actions of solvable groups”, Trans. Amer. Math. Soc., 360:1 (2008), 135–152 | DOI | MR | Zbl

[4] Vdovin E. P., “Regular orbits of solvable linear $p'$-groups”, Sib. elektron. mat. izv., 4 (2007), 345–360 | MR | Zbl

[5] Zenkov V. I., “O peresecheniyakh razreshimykh khollovykh podgrupp v konechnykh nerazreshimykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 86–89 | Zbl

[6] Vdovin E. P., Zenkov V. I., “O peresechenii razreshimykh khollovykh podgrupp v konechnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 74–83 | Zbl

[7] Hall P., “Theorems like Sylow's”, Proc. London Math. Soc. (3), 6:6 (1956), 286–304 | DOI | MR | Zbl

[8] Zenkov V. I., “Peresecheniya abelevykh podgrupp v konechnykh gruppakh”, Mat. zametki, 56:2 (1994), 150–152 | MR | Zbl

[9] Vdovin E. P., Revin D. O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5(401) (2011), 3–46 | DOI | MR | Zbl

[10] Burness T. C., Liebeck M. W., Shalev A., “Base sizes for simple groups and a conjecture of Cameron”, Proc. Lond. Math. Soc. (3), 98:1 (2009), 116–162 | DOI | MR | Zbl

[11] Liebeck M. W., Shalev A., “Simple groups, permutation groups, and probability”, J. Amer. Math. Soc., 12:2 (1999), 497–520 | DOI | MR | Zbl

[12] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Number 3. Part I. Chapter A. Almost simple $K$-groups, Math. Surveys and Monographs, 40, no. 3, Amer. Math. Soc., Providence, 1998, 420 pp. | MR | Zbl

[13] Carter R. W., Simple groups of Lie type, Wiley Sons, New York, 1972, 331 pp. | MR | Zbl

[14] Vdovin E. P., Revin D. O., “Khollovy podgruppy nechetnogo poryadka konechnykh grupp”, Algebra i logika, 41:1 (2002), 15–56 | MR | Zbl

[15] Revin D. O. Vdovin E. P., “Hall subgroups of finite groups”, Contemp. Math., 402 (2006), 229–263 | DOI | MR | Zbl

[16] Revin D. O., Vdovin E. P., “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl

[17] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver. 4.5.7, URL: , 2013 http://www.gap-system.org

[18] Deriziotis D. I., “The centralizers of semisimple elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 6:1 (1983), 191–216 | DOI | MR | Zbl

[19] Deriziotis D. I., Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, 11, Essen, 1984, 148 pp. | MR | Zbl