Groups with finitary classes of conjugate elements
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 45-61
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A class of conjugate elements of a group is called finitary if the action of group by conjugation induces a group of finitary permutations of this class. A group with finitary classes of conjugate elements will be called a ФC-group. Some characterizations of ФC-groups in the class of all groups are obtained. It is also shown for every ФC-group that either it is an FC-group, i.e., a group with finite classes of conjugate elements, or its structure is close to the structure of a totally imprimitive group of finitary permutations.
Keywords: finitary permutation groups, generalized FC-groups.
@article{TIMM_2013_19_3_a4,
     author = {V. V. Belyaev},
     title = {Groups with finitary classes of conjugate elements},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {45--61},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a4/}
}
TY  - JOUR
AU  - V. V. Belyaev
TI  - Groups with finitary classes of conjugate elements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 45
EP  - 61
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a4/
LA  - ru
ID  - TIMM_2013_19_3_a4
ER  - 
%0 Journal Article
%A V. V. Belyaev
%T Groups with finitary classes of conjugate elements
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 45-61
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a4/
%G ru
%F TIMM_2013_19_3_a4
V. V. Belyaev. Groups with finitary classes of conjugate elements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 45-61. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a4/

[1] Belyaev V. V., “Lokalnye kharakterizatsii beskonechnykh znakoperemennykh grupp i grupp lievskogo tipa”, Algebra i logika, 31:4 (1992), 369–390 | MR | Zbl

[2] Belyaev V. V., “Periodicheskie poluprostye gruppy konechnykh preobrazovanii”, Algebra i logika, 32:1 (1993), 17–33 | MR | Zbl

[3] Belyaev V. V., “K voprosu o suschestvovanii minimalnykh ne FC-grupp”, Sib. mat. zhurn., 39:6 (1998), 1267–1270 | MR | Zbl

[4] Belyaev V. V., “Pryamye summy finitarnykh grupp podstanovok”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 45–49 | Zbl

[5] Belyaev V. V., “Spleteniya grupp finitarnykh podstanovok”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 38–43

[6] Leinen F., Puglisi O., “Finitary representations and images of transitive finitary permutation groups”, J. Algebra, 222:2 (1999), 524–549 | DOI | MR | Zbl

[7] Neumann B. H., “Groups with finite classes of conjugate elements”, Proc. London Math. Soc. (3), 1 (1951), 178–187 | DOI | MR | Zbl

[8] Neumann P. M., “The structure of finitary permutations groups”, Arch. Math., 27:1 (1976), 3–17 | DOI | MR | Zbl

[9] Olshanskii A. Yu., “Beskonechnye gruppy s tsiklicheskimi podgruppami”, Dokl. AN SSSR, 245:4 (1979), 785–787 | MR