On the $\mathfrak F$-residual of the direct product of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 316-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a subset of the set $\mathbb P$ of all primes, and let $\pi'=\mathbb P\backslash\pi$. A formation $\mathfrak F$ is called $\pi'$-saturated if $G/O_{\pi'}(\Phi(G))\in\mathfrak F$ implies $G\in\mathfrak F$. If $\mathfrak F$ is a nonempty $\pi'$-saturated formation of $\pi$-soluble groups, then it is proved that $(A\otimes B)^\mathfrak F=A^\mathfrak F\otimes B^\mathfrak F$ for any finite groups $A$ and $B$. In the case $\pi=\mathbb P$, this result was proved by K. Doerk and T. Hawkes in 1978.
Keywords: finite group, direct product, $\mathfrak F$-residual.
Mots-clés : formation
@article{TIMM_2013_19_3_a33,
     author = {L. A. Shemetkov},
     title = {On the $\mathfrak F$-residual of the direct product of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/}
}
TY  - JOUR
AU  - L. A. Shemetkov
TI  - On the $\mathfrak F$-residual of the direct product of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 316
EP  - 320
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/
LA  - ru
ID  - TIMM_2013_19_3_a33
ER  - 
%0 Journal Article
%A L. A. Shemetkov
%T On the $\mathfrak F$-residual of the direct product of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 316-320
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/
%G ru
%F TIMM_2013_19_3_a33
L. A. Shemetkov. On the $\mathfrak F$-residual of the direct product of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 316-320. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/