On the $\mathfrak F$-residual of the direct product of finite groups
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 316-320
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\pi$ be a subset of the set $\mathbb P$ of all primes, and let $\pi'=\mathbb P\backslash\pi$. A formation $\mathfrak F$ is called $\pi'$-saturated if $G/O_{\pi'}(\Phi(G))\in\mathfrak F$ implies $G\in\mathfrak F$. If $\mathfrak F$ is a nonempty $\pi'$-saturated formation of $\pi$-soluble groups, then it is proved that $(A\otimes B)^\mathfrak F=A^\mathfrak F\otimes B^\mathfrak F$ for any finite groups $A$ and $B$. In the case $\pi=\mathbb P$, this result was proved by K. Doerk and T. Hawkes in 1978.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, direct product, $\mathfrak F$-residual.
Mots-clés : formation
                    
                  
                
                
                Mots-clés : formation
@article{TIMM_2013_19_3_a33,
     author = {L. A. Shemetkov},
     title = {On the $\mathfrak F$-residual of the direct product of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/}
}
                      
                      
                    L. A. Shemetkov. On the $\mathfrak F$-residual of the direct product of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 316-320. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/
