On the $\mathfrak F$-residual of the direct product of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 316-320
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\pi$ be a subset of the set $\mathbb P$ of all primes, and let $\pi'=\mathbb P\backslash\pi$. A formation $\mathfrak F$ is called $\pi'$-saturated if $G/O_{\pi'}(\Phi(G))\in\mathfrak F$ implies $G\in\mathfrak F$. If $\mathfrak F$ is a nonempty $\pi'$-saturated formation of $\pi$-soluble groups, then it is proved that $(A\otimes B)^\mathfrak F=A^\mathfrak F\otimes B^\mathfrak F$ for any finite groups $A$ and $B$. In the case $\pi=\mathbb P$, this result was proved by K. Doerk and T. Hawkes in 1978.
Keywords:
finite group, direct product, $\mathfrak F$-residual.
Mots-clés : formation
Mots-clés : formation
@article{TIMM_2013_19_3_a33,
author = {L. A. Shemetkov},
title = {On the $\mathfrak F$-residual of the direct product of finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {316--320},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/}
}
L. A. Shemetkov. On the $\mathfrak F$-residual of the direct product of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 316-320. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a33/
[1] Doerk K., Hawkes T. O., Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR
[2] Doerk K., Hawkes T. O., “On the residual of a direct product”, Arch. Math., 30:5 (1978), 458–468 | DOI | MR | Zbl
[3] Shemetkov L. A., “Lokalnye zadaniya formatsii konechnykh grupp”, Fundament. i prikl. matematika, 16:8 (2010), 229–244 | MR
[4] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl
[5] Huppert B., Endliche Gruppen, v. I, Springer, Berlin–New York, 1967, 793 pp. | MR | Zbl