Finite groups with bicyclic Sylow subgroups in Fitting factors
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 304-307

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the derived length, nilpotent length, and $p$-length are obtained for a finite solvable group $G$ in which Sylow subgroups in factors of the chain $\Phi(G)=G_0\subset G_1\subset\ldots\subset G_{m-1}\subset G_m=F(G)$ of subgroups normal in $G$ are bicyclic, i.e., are factorized by two cyclic subgroups. Here, $\Phi(G)$ is the Frattini subgroup of $G$ and $F(G)$ is the Fitting subgroup of $G$. In particular, the derived length of $G/\Phi(G)$ is at most 5, the nilpotent length of $G$ is at most 4, and the $p$-length of $G$ is at most 2 for every prime $p$.
Mots-clés : finite solvable group
Keywords: Frattini subgroup, Fitting subgroup, derived length, nilpotent length, $p$-length, $A_4$-free group.
@article{TIMM_2013_19_3_a31,
     author = {A. A. Trofimuk},
     title = {Finite groups with bicyclic {Sylow} subgroups in {Fitting} factors},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {304--307},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a31/}
}
TY  - JOUR
AU  - A. A. Trofimuk
TI  - Finite groups with bicyclic Sylow subgroups in Fitting factors
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 304
EP  - 307
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a31/
LA  - ru
ID  - TIMM_2013_19_3_a31
ER  - 
%0 Journal Article
%A A. A. Trofimuk
%T Finite groups with bicyclic Sylow subgroups in Fitting factors
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 304-307
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a31/
%G ru
%F TIMM_2013_19_3_a31
A. A. Trofimuk. Finite groups with bicyclic Sylow subgroups in Fitting factors. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 304-307. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a31/