The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 290-303

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there are only finitely many symmetrical $2$-extensions of a locally finite graph whenever the automorphism group of the graph has an abelian subgroup of finite index (this case is of interest for certain applications). Some refinements and generalizations of this result are also given.
Keywords: graph, group of automorphisms, symmetrical extension of graphs.
@article{TIMM_2013_19_3_a30,
     author = {V. I. Trofimov},
     title = {The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {290--303},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a30/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 290
EP  - 303
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a30/
LA  - ru
ID  - TIMM_2013_19_3_a30
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 290-303
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a30/
%G ru
%F TIMM_2013_19_3_a30
V. I. Trofimov. The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 290-303. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a30/