On uniform permutations with finite dispersion parameters
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 284-289
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the group $G$ of uniform permutations of the set of integers with finite dispersion parameters. We prove that every finite subset of $G$ lies in a subgroup of the form $Q=AB$, where $A$ and $B$ are locally finitely approximable subgroups of $G$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
group, uniform permutation
Keywords: dispersion parameter.
                    
                  
                
                
                Keywords: dispersion parameter.
@article{TIMM_2013_19_3_a29,
     author = {N. M. Suchkov and Yu. S. Tarasov},
     title = {On uniform permutations with finite dispersion parameters},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {284--289},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a29/}
}
                      
                      
                    TY - JOUR AU - N. M. Suchkov AU - Yu. S. Tarasov TI - On uniform permutations with finite dispersion parameters JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 284 EP - 289 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a29/ LA - ru ID - TIMM_2013_19_3_a29 ER -
N. M. Suchkov; Yu. S. Tarasov. On uniform permutations with finite dispersion parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 284-289. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a29/
