Stability of autoresonance models under perturbations that are bounded in the mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 274-283

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to investigating the stability of growing solutions of nonlinear equations related to the autoresonance phenomenon. The stability of these solutions under persistent perturbations is analyzed. A class of perturbations is introduced, and its properties that provide the stability of autoresonance are described. The argument is based on the existence on the Lyapunov function of the unperturbed systems.
Keywords: autoresonance, stability, asymptotics
Mots-clés : perturbations.
@article{TIMM_2013_19_3_a28,
     author = {O. A. Sultanov},
     title = {Stability of autoresonance models under perturbations that are bounded in the mean},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--283},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stability of autoresonance models under perturbations that are bounded in the mean
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 274
EP  - 283
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/
LA  - ru
ID  - TIMM_2013_19_3_a28
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stability of autoresonance models under perturbations that are bounded in the mean
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 274-283
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/
%G ru
%F TIMM_2013_19_3_a28
O. A. Sultanov. Stability of autoresonance models under perturbations that are bounded in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 274-283. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/