Stability of autoresonance models under perturbations that are bounded in the mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 274-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to investigating the stability of growing solutions of nonlinear equations related to the autoresonance phenomenon. The stability of these solutions under persistent perturbations is analyzed. A class of perturbations is introduced, and its properties that provide the stability of autoresonance are described. The argument is based on the existence on the Lyapunov function of the unperturbed systems.
Keywords: autoresonance, stability, asymptotics
Mots-clés : perturbations.
@article{TIMM_2013_19_3_a28,
     author = {O. A. Sultanov},
     title = {Stability of autoresonance models under perturbations that are bounded in the mean},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--283},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stability of autoresonance models under perturbations that are bounded in the mean
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 274
EP  - 283
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/
LA  - ru
ID  - TIMM_2013_19_3_a28
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stability of autoresonance models under perturbations that are bounded in the mean
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 274-283
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/
%G ru
%F TIMM_2013_19_3_a28
O. A. Sultanov. Stability of autoresonance models under perturbations that are bounded in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 274-283. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a28/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 408 pp. | MR

[2] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi mat. nauk, 63:5 (2008), 3–72 | DOI | MR | Zbl

[3] Malkin I. G., Teoriya ustoichivosti dvizheniya, GITTL, M.–L., 1952, 432 pp. | MR

[4] Khapaev M. M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vyssh.shk., M., 1988, 184 pp. | MR

[5] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 368 pp. | MR

[6] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[7] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego prilozheniya, 23:4 (1989), 63–74 | MR | Zbl

[8] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo Mosk. un-ta, M., 1996, 244 pp. | MR | Zbl

[9] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial, M., 2004, 552 pp.

[10] Germaidze V. E., “Ob asimptoticheskoi ustoichivosti po pervomu priblizheniyu”, Prikl. matematika i mekhanika, 21:1 (1957), 133–135 | MR

[11] Germaidze V. E., Krasovskii N. N., “Ob ustoichivosti pri postoyanno deistvuyuschikh vozmuscheniyakh”, Prikl. matematika i mekhanika, 21:6 (1957), 769–774 | MR

[12] Vrkoch I., “Integralnaya ustoichivost”, Chekhoslovatskii mat. zhurn., 9:1 (1959), 71–129

[13] Sultanov O. A., “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufim. mat. zhurn., 2:4 (2010), 88–98

[14] Kalyakin L. A., Sultanov O. A., “Ustoichivost modelei avtorezonansa”, Differents. uravneniya, 49:3 (2013), 279–293 | Zbl

[15] Kalyakin L. A., Sultanov O. A., Shamsutdinov M. A., “Asimptoticheskii analiz modeli yadernogo magnitnogo avtorezonansa”, Teoret. i mat. fizika, 167:3 (2011), 420–431 | DOI