On maximal abnormal subgroups of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 268-273

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $m$-functor $\Theta$ is a function that maps each group $G$ to some set $\Theta(G)$ consisting of maximal subgroups of $G$ and the group $G$ itself; it is assumed that $\Theta(G^\alpha)=(\Theta(G))^\alpha$ for any automorphism $\alpha$ of $G$. We establish the structure of the functor generalized Frattini subgroup and its influence on the properties of the group.
Keywords: finite group, $p$-nilpotent group, maximal subgroup, $m$-functor.
@article{TIMM_2013_19_3_a27,
     author = {M. V. Sel'kin and R. V. Borodich},
     title = {On maximal abnormal subgroups of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--273},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/}
}
TY  - JOUR
AU  - M. V. Sel'kin
AU  - R. V. Borodich
TI  - On maximal abnormal subgroups of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 268
EP  - 273
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/
LA  - ru
ID  - TIMM_2013_19_3_a27
ER  - 
%0 Journal Article
%A M. V. Sel'kin
%A R. V. Borodich
%T On maximal abnormal subgroups of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 268-273
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/
%G ru
%F TIMM_2013_19_3_a27
M. V. Sel'kin; R. V. Borodich. On maximal abnormal subgroups of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 268-273. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/