On maximal abnormal subgroups of finite groups
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 268-273
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A subgroup $m$-functor $\Theta$ is a function that maps each group $G$ to some set $\Theta(G)$ consisting of maximal subgroups of $G$ and the group $G$ itself; it is assumed that $\Theta(G^\alpha)=(\Theta(G))^\alpha$ for any automorphism $\alpha$ of $G$. We establish the structure of the functor generalized Frattini subgroup and its influence on the properties of the group.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, $p$-nilpotent group, maximal subgroup, $m$-functor.
                    
                  
                
                
                @article{TIMM_2013_19_3_a27,
     author = {M. V. Sel'kin and R. V. Borodich},
     title = {On maximal abnormal subgroups of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--273},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/}
}
                      
                      
                    M. V. Sel'kin; R. V. Borodich. On maximal abnormal subgroups of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 268-273. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/
