On maximal abnormal subgroups of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 268-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subgroup $m$-functor $\Theta$ is a function that maps each group $G$ to some set $\Theta(G)$ consisting of maximal subgroups of $G$ and the group $G$ itself; it is assumed that $\Theta(G^\alpha)=(\Theta(G))^\alpha$ for any automorphism $\alpha$ of $G$. We establish the structure of the functor generalized Frattini subgroup and its influence on the properties of the group.
Keywords: finite group, $p$-nilpotent group, maximal subgroup, $m$-functor.
@article{TIMM_2013_19_3_a27,
     author = {M. V. Sel'kin and R. V. Borodich},
     title = {On maximal abnormal subgroups of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--273},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/}
}
TY  - JOUR
AU  - M. V. Sel'kin
AU  - R. V. Borodich
TI  - On maximal abnormal subgroups of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 268
EP  - 273
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/
LA  - ru
ID  - TIMM_2013_19_3_a27
ER  - 
%0 Journal Article
%A M. V. Sel'kin
%A R. V. Borodich
%T On maximal abnormal subgroups of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 268-273
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/
%G ru
%F TIMM_2013_19_3_a27
M. V. Sel'kin; R. V. Borodich. On maximal abnormal subgroups of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 268-273. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a27/

[1] Chunikhin S. A., Shemetkov L. A., “Konechnye gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 8, ed. R. V. Gamkrelidze, VINITI, M., 1969, 7–70 | MR | Zbl

[2] Kondratev A. S., Makhnev A. ., Starostin A. I., “Konechnye gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 24, ed. R. V. Gamkrelidze, VINITI, M., 1986, 3–120 | MR | Zbl

[3] Monakhov V. S., “Zamechanie o peresechenii nenormalnykh maksimalnykh podgrupp konechnykh grupp”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 2004, no. 6(27), 81–87

[4] Selkin M. V., Maksimalnye podgruppy v teorii klassov konechnykh grupp, Belaruskaya navuka, Mn., 1997, 144 pp. | MR

[5] Kamornikov S. F., Selkin M. V., Podgruppovye funktory i klassy konechnykh grupp, Bel. navuka, Minsk., 2003, 254 pp.

[6] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Sovremennaya algebra, Nauka, M., 1989, 256 pp. | MR | Zbl

[7] Selkin M. V., Borodich R. V., “O peresechenii maksimalnykh podgrupp konechnykh grupp”, Vest. Samarsk. gos. un-ta. Estestvennonauchn. ser., 2009, no. 8(74), 67–77

[8] Selkin M. V., Borodich R. V., “Ob $\mathfrak F$-dostizhimykh podgruppakh konechnykh grupp”, Mat. zametki, 90:5 (2011), 727–735 | DOI | MR

[9] Shemetkov L. A., Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978, 272 pp. | MR | Zbl

[10] Thompson J. G., “Normal $p$-complements for finite groups”, J. Algebra, 1:1 (1964), 43–46 | DOI | MR | Zbl

[11] Gilotti A., Tiberio U., “On the intersection of maximal non-supersoluble subgroups in a finite group”, Boll. Unione Mat. Ital. Ser. B Artic. Ric. Mat. (8), 3:3 (2000), 691–698 | MR | Zbl

[12] Shlyk V. V., “O peresechenii maksimalnykh podgrupp v konechnykh gruppakh”, Mat. zametki, 14:3 (1973), 429–439 | MR | Zbl

[13] Gilotti A., Tiberio U., “On the intersection of certain class of maximal subgroups of a finite group”, Arch. Math., 71:2 (1998), 89–94 | DOI | MR | Zbl

[14] Shidov L. I., “O maksimalnykh podgruppakh konechnykh grupp”, Sib. mat. zhurn., 12:3 (1971), 682–683 | Zbl