@article{TIMM_2013_19_3_a25,
author = {A. V. Osipov and E. G. Pytkeev},
title = {On the $\sigma$-countable compactness of spaces of continuous functions with the set-open topology},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {251--260},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a25/}
}
TY - JOUR AU - A. V. Osipov AU - E. G. Pytkeev TI - On the $\sigma$-countable compactness of spaces of continuous functions with the set-open topology JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 251 EP - 260 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a25/ LA - ru ID - TIMM_2013_19_3_a25 ER -
%0 Journal Article %A A. V. Osipov %A E. G. Pytkeev %T On the $\sigma$-countable compactness of spaces of continuous functions with the set-open topology %J Trudy Instituta matematiki i mehaniki %D 2013 %P 251-260 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a25/ %G ru %F TIMM_2013_19_3_a25
A. V. Osipov; E. G. Pytkeev. On the $\sigma$-countable compactness of spaces of continuous functions with the set-open topology. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 251-260. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a25/
[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Mir, M., 1986, 224 pp. | MR
[2] Velichko N. V., “O slaboi topologii prostranstv nepreryvnykh funktsii”, Mat. zametki, 30:5 (1981), 703–712 | MR | Zbl
[3] Gillman L., Jerison M., Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, 1960, 300 pp. | MR | Zbl
[4] Nokhrin S. E., “Some properties of set-open topologies”, J. Math. Sci., 144:3 (2007), 4123–4151 | DOI | MR | Zbl
[5] Osipov A. V., “Topological-algebraic properties of function spaces with set-open topologies”, Topology Appl., 159:3 (2012), 800–805 | DOI | MR | Zbl
[6] Tkačuk V. V., “The spaces $C_p(X)$: decomposition into a countable union of bounded subspaces and completeness properties”, Topology Appl., 22:3 (1986), 241–253 | DOI | MR | Zbl