Groups lying between Steinberg groups over non-perfect fields of characteristics~2 and~3
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 244-250
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We describe groups lying between Steinberg groups of type $^2A_l$, $^2D_l$, $^2E_6$, or $^3D_4$ over different fields of characteristics 2 and 3 in the case where the larger field is an algebraic extension of the smaller non-perfect field.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Chevalley group, Steinberg group, non-perfect field, intermediate subgroups.
                    
                  
                
                
                @article{TIMM_2013_19_3_a24,
     author = {Ya. N. Nuzhin},
     title = {Groups lying between {Steinberg} groups over non-perfect fields of characteristics~2 and~3},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--250},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a24/}
}
                      
                      
                    TY - JOUR AU - Ya. N. Nuzhin TI - Groups lying between Steinberg groups over non-perfect fields of characteristics~2 and~3 JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 244 EP - 250 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a24/ LA - ru ID - TIMM_2013_19_3_a24 ER -
Ya. N. Nuzhin. Groups lying between Steinberg groups over non-perfect fields of characteristics~2 and~3. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 244-250. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a24/
