On an interpolation problem with a minimum value of the Laplace operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 230-243
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of interpolation of finite sets of numerical data by smooth functions that are defined on a plane square and vanish on its boundary. Under some constraints on the location of interpolation points inside the square, close upper and lower estimates with the same dependence on the number of interpolation points are obtained for the $L_\infty$-norms of the Laplace operator of the best interpolants on the class of bounded interpolation data. Exact solutions are found for the cases of interpolation at one point and at two points.
Mots-clés : interpolation
Keywords: Laplace operator, extreme points.
@article{TIMM_2013_19_3_a23,
     author = {S. I. Novikov},
     title = {On an interpolation problem with a~minimum value of the {Laplace} operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {230--243},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a23/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - On an interpolation problem with a minimum value of the Laplace operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 230
EP  - 243
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a23/
LA  - ru
ID  - TIMM_2013_19_3_a23
ER  - 
%0 Journal Article
%A S. I. Novikov
%T On an interpolation problem with a minimum value of the Laplace operator
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 230-243
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a23/
%G ru
%F TIMM_2013_19_3_a23
S. I. Novikov. On an interpolation problem with a minimum value of the Laplace operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 230-243. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a23/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[2] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:9 (1940), 281–306 | MR | Zbl

[3] Fisher S., Jerome J., Minimum norm extremals in function spaces, With applications to classical and modern analysis, Lecture Notes in Math., 479, Springer-Verlag, Berlin, 1975, 209 pp. | MR | Zbl

[4] Tikhomirov V. M., Boyanov B. D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdica, 5:1 (1979), 83–96 | MR | Zbl

[5] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. Mat. in-ta im. V. A. Steklova, 78, 1965, 24–42 | MR | Zbl

[6] Subbotin Yu. N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. Mat. in-ta im. V. A. Steklova, 88, 1967, 30–60 | MR | Zbl

[7] Subbotin Yu. N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. Mat. in-ta im. V. A. Steklova, 138, 1975, 118–173 | MR | Zbl

[8] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[9] Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[10] Novikov S. I., Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii dlya funktsii mnogikh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 1, 2001, 144–159

[11] Novikov S. I., “Zadachi ekstremalnoi funktsionalnoi interpolyatsii”, Tr. Mezhdunar. letnei mat. shk. S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 100–109

[12] Novikov S. I., “Interpolyatsiya na kvadrate s minimalnym znacheniem ravnomernoi normy operatora Laplasa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 249–257

[13] Novikov S. I., “Interpolyatsiya s minimalnym znacheniem normy operatora Laplasa v share”, Zbirnik prats In-tu matem. NAN Ukraïni, 5:1 (2008), 248–262 | Zbl

[14] Novikov S. I., “Interpolyatsiya v share s minimalnym znacheniem $L_p$-normy operatora Laplasa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 258–265

[15] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[16] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl

[17] Burenkov V. I., Sobolev spaces on domains, Teubner Texts in Math., 137, B. G. Teubner Verlag GmbH, Stuttgart, 1998, 312 pp. | DOI | MR | Zbl

[18] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968, 496 pp. | MR | Zbl

[19] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl

[20] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[21] de Boor C., “Splines as linear combinations of B-splines”, Approximation Theory, Proc. of Internat. Symposium (Austin, Texas, 1976), v. II, Academic Press, N.Y. ect., 1976, 1–47

[22] Holmes R., Geometric functional analysis and its applications, Springer Verlag, N.Y. ect., 1975, 246 pp. | MR | Zbl

[23] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[24] Timofeev V. G., “Neravenstvo tipa Landau dlya funktsii neskolkikh peremennykh”, Mat. zametki, 37:5 (1985), 676–689 | MR | Zbl

[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Ryady i integraly. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR | Zbl