Twisted subset graphs of diameter 2
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 224-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and $xy^{-1}x\in K$ for any $x,y\in K$. The connection between the structure of a twisted subset graph of diameter 2 and the structure of the group generated by the twisted subset is investigated.
Keywords: twisted subset, twisted subset graph.
@article{TIMM_2013_19_3_a22,
     author = {A. L. Myl'nikov},
     title = {Twisted subset graphs of diameter~2},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--229},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/}
}
TY  - JOUR
AU  - A. L. Myl'nikov
TI  - Twisted subset graphs of diameter 2
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 224
EP  - 229
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/
LA  - ru
ID  - TIMM_2013_19_3_a22
ER  - 
%0 Journal Article
%A A. L. Myl'nikov
%T Twisted subset graphs of diameter 2
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 224-229
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/
%G ru
%F TIMM_2013_19_3_a22
A. L. Myl'nikov. Twisted subset graphs of diameter 2. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 224-229. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/

[1] Mylnikov A. L., “Konechnye perekruchennye gruppy”, Sib. mat. zhurn., 48:2 (2007), 369–375 | MR | Zbl

[2] Mylnikov A. L., “Grafy skruchennykh podmnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 179–186

[3] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR | Zbl

[4] Sozutov A. I., “O parakh Frobeniusa s sovershennymi involyutsiyami”, Algebra i logika, 44:6 (2005), 751–762 | MR | Zbl

[5] Mylnikov A. L., “Kharakterizatsiya konechnykh prostykh neabelevykh grupp s pomoschyu skruchennykh podmnozhestv”, Sib. mat. zhurn., 51:5 (2010), 1078–1085 | MR

[6] Mylnikov A. L., “Grafy skruchennykh podmnozhestv diametra 2”, Reshetnevskie chteniya, Materialy XIV Mezhdunar. nauch. konf., posvyasch. pamyati gen. konstruktora raketno-kosmicheskikh sistem akad. M. F. Reshetneva, Ch. 2, Sib. gos. aerokosmich. un-t, Krasnoyarsk, 2010, 451–452