Twisted subset graphs of diameter~2
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 224-229

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and $xy^{-1}x\in K$ for any $x,y\in K$. The connection between the structure of a twisted subset graph of diameter 2 and the structure of the group generated by the twisted subset is investigated.
Keywords: twisted subset, twisted subset graph.
@article{TIMM_2013_19_3_a22,
     author = {A. L. Myl'nikov},
     title = {Twisted subset graphs of diameter~2},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--229},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/}
}
TY  - JOUR
AU  - A. L. Myl'nikov
TI  - Twisted subset graphs of diameter~2
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 224
EP  - 229
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/
LA  - ru
ID  - TIMM_2013_19_3_a22
ER  - 
%0 Journal Article
%A A. L. Myl'nikov
%T Twisted subset graphs of diameter~2
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 224-229
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/
%G ru
%F TIMM_2013_19_3_a22
A. L. Myl'nikov. Twisted subset graphs of diameter~2. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 224-229. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/