Twisted subset graphs of diameter~2
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 224-229
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and $xy^{-1}x\in K$ for any $x,y\in K$. The connection between the structure of a twisted subset graph of diameter 2 and the structure of the group generated by the twisted subset is investigated.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
twisted subset, twisted subset graph.
                    
                  
                
                
                @article{TIMM_2013_19_3_a22,
     author = {A. L. Myl'nikov},
     title = {Twisted subset graphs of diameter~2},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--229},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/}
}
                      
                      
                    A. L. Myl'nikov. Twisted subset graphs of diameter~2. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 224-229. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a22/
