On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi$-Hall subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 215-223

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_\pi$ be a $\pi$-Hall subgroup of a finite $\pi$-solvable group $G$, and let $M$ be a maximal subgroup of $G_\pi$. We find estimates for the derived $\pi$-length $l^a_\pi(G)$ of $G$ depending on the structure of the subgroups $G_\pi$ or $M$. We consider the situation where all proper subgroups in these subgroups are abelian or nilpotent. In particular, we prove that $l_\pi^a(G)\le5$ if $M$ is a minimal nonnilpotent group.
Mots-clés : finite $\pi$-solvable group
Keywords: Hall subgroup, derived length.
@article{TIMM_2013_19_3_a21,
     author = {V. S. Monakhov and D. V. Gritsuk},
     title = {On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi${-Hall} subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--223},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - D. V. Gritsuk
TI  - On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi$-Hall subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 215
EP  - 223
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/
LA  - ru
ID  - TIMM_2013_19_3_a21
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A D. V. Gritsuk
%T On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi$-Hall subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 215-223
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/
%G ru
%F TIMM_2013_19_3_a21
V. S. Monakhov; D. V. Gritsuk. On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi$-Hall subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 215-223. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/