Keywords: Hall subgroup, derived length.
@article{TIMM_2013_19_3_a21,
author = {V. S. Monakhov and D. V. Gritsuk},
title = {On the derived $\pi$-length of a~finite $\pi$-solvable group with a~given $\pi${-Hall} subgroup},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {215--223},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/}
}
TY - JOUR AU - V. S. Monakhov AU - D. V. Gritsuk TI - On the derived $\pi$-length of a finite $\pi$-solvable group with a given $\pi$-Hall subgroup JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 215 EP - 223 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/ LA - ru ID - TIMM_2013_19_3_a21 ER -
%0 Journal Article %A V. S. Monakhov %A D. V. Gritsuk %T On the derived $\pi$-length of a finite $\pi$-solvable group with a given $\pi$-Hall subgroup %J Trudy Instituta matematiki i mehaniki %D 2013 %P 215-223 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/ %G ru %F TIMM_2013_19_3_a21
V. S. Monakhov; D. V. Gritsuk. On the derived $\pi$-length of a finite $\pi$-solvable group with a given $\pi$-Hall subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 215-223. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a21/
[1] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl
[2] Gritsuk D. V., Monakhov V. S., Shpyrko O. A., “O proizvodnoi $\pi$-dline $\pi$-razreshimoi gruppy”, Vest. BGU. Ser. 1, 2012, no. 3, 90–95
[3] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy”, Diskret. matematika, 13:3 (2001), 145–152 | DOI | MR | Zbl
[4] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline maksimalnykh podgrupp konechnykh $\pi$-razreshimykh grupp”, Vestn. Mosk. un-ta. Ser. 1: Matematika, mekhanika, 2009, no. 6, 3–8 | MR
[5] Gritsuk D. V., Monakhov V. S., Shpyrko O. A., “O konechnykh $\pi$-razreshimykh gruppakh s bitsiklicheskimi silovskimi podgruppami”, Problemy matematiki, fiziki i tekhniki, 14:1 (2013), 61–66
[6] Shmidt O. Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31:3–4 (1924), 366–372 | Zbl
[7] Golfand Yu. A., “O gruppakh, vse podgruppy kotorykh spetsialnye”, Dokl. AN SSSR, 60:8, 1948
[8] Berkovich Y., Groups of prime power order, v. 1, Walter de Gruyter, Berlin, 2008, 512 pp. | MR | Zbl
[9] Monakhov V. S., “Proizvedenie konechnykh grupp, blizkikh k nilpotentnym”, Konechnye gruppy, Cb. st., Nauka i tekhnika, Minsk, 1975, 70–100
[10] Zhurtov A. Kh., Syskin S. A., “O gruppakh Shmidta”, Sib. mat. zhurn., 28:2 (1987), 74–78 | MR | Zbl
[11] Chernikov N. S., “Groups with an abelian maximal subgroup”, Tr. In-ta matematiki NAN Belarusi, 16, no. 1, 2008, 86–92
[12] Belonogov V. A., “Konechnye razreshimye gruppy s nilpotentnymi 2-maksimalnymi podgruppami”, Mat. zametki, 3:1 (1968), 21–32 | MR | Zbl
[13] Sistema kompyuternoi algebry GAP 4.4.12, elektron. resurs, URL: , 2009 http://www.gap-system.org/ukrgap/gapbook/manual.pdf