On strongly regular graphs with eigenvalue $\mu$ and their extensions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 207-214
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathcal M$ be a class of strongly regular graphs for which $\mu$ is a non-principal eigenvalue. Note that the neighborhood of any vertex of an $AT4$ graph lies in $\mathcal M$. We describe parameters of graphs from $\mathcal M$ and find intersection arrays of $AT4$ graphs in which neighborhoods of vertices lie in chosen subclasses from $\mathcal M$. In particular, an $AT4$ graph in which the neighborhoods of vertices do not contain triangles is the Conway–Smith graph with parameters $(p,q,r)=(1,2,3)$ or the first Soicher graph with parameters $(p,q,r)=(2,4,3)$.
Keywords:
strongly regular graph, $AT4$-graph, locally $\mathcal M$-graph.
@article{TIMM_2013_19_3_a20,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {On strongly regular graphs with eigenvalue~$\mu$ and their extensions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {207--214},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/}
}
TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh TI - On strongly regular graphs with eigenvalue $\mu$ and their extensions JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 207 EP - 214 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/ LA - ru ID - TIMM_2013_19_3_a20 ER -
A. A. Makhnev; D. V. Paduchikh. On strongly regular graphs with eigenvalue $\mu$ and their extensions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 207-214. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989, 495 pp. | MR | Zbl
[2] Jurisic A., Koolen J., “Krein parameters and antipodal tight graphs with diameter 3 and 4”, Discrete Math., 244 (2002), 181–202 | DOI | MR | Zbl
[3] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory Ser. A, 118:3 (2011), 842–852 | DOI | MR | Zbl
[4] Jurisic A., “$AT4$-family and 2-homogeneous graphs”, Discrete Math., 264:1–3 (2003), 127–148 | DOI | MR | Zbl
[5] Cameron P., van Lint J. H., Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1991, 240 pp. | MR | Zbl