On strongly regular graphs with eigenvalue $\mu$ and their extensions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 207-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal M$ be a class of strongly regular graphs for which $\mu$ is a non-principal eigenvalue. Note that the neighborhood of any vertex of an $AT4$ graph lies in $\mathcal M$. We describe parameters of graphs from $\mathcal M$ and find intersection arrays of $AT4$ graphs in which neighborhoods of vertices lie in chosen subclasses from $\mathcal M$. In particular, an $AT4$ graph in which the neighborhoods of vertices do not contain triangles is the Conway–Smith graph with parameters $(p,q,r)=(1,2,3)$ or the first Soicher graph with parameters $(p,q,r)=(2,4,3)$.
Keywords: strongly regular graph, $AT4$-graph, locally $\mathcal M$-graph.
@article{TIMM_2013_19_3_a20,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On strongly regular graphs with eigenvalue~$\mu$ and their extensions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--214},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On strongly regular graphs with eigenvalue $\mu$ and their extensions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 207
EP  - 214
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/
LA  - ru
ID  - TIMM_2013_19_3_a20
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On strongly regular graphs with eigenvalue $\mu$ and their extensions
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 207-214
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/
%G ru
%F TIMM_2013_19_3_a20
A. A. Makhnev; D. V. Paduchikh. On strongly regular graphs with eigenvalue $\mu$ and their extensions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 207-214. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a20/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989, 495 pp. | MR | Zbl

[2] Jurisic A., Koolen J., “Krein parameters and antipodal tight graphs with diameter 3 and 4”, Discrete Math., 244 (2002), 181–202 | DOI | MR | Zbl

[3] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory Ser. A, 118:3 (2011), 842–852 | DOI | MR | Zbl

[4] Jurisic A., “$AT4$-family and 2-homogeneous graphs”, Discrete Math., 264:1–3 (2003), 127–148 | DOI | MR | Zbl

[5] Cameron P., van Lint J. H., Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1991, 240 pp. | MR | Zbl