On groups with relatively small normalizers of nonabelian subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 23-28
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate the structure of a finite nonsolvable group $G$ in which for any nonabelian subgroup $A$ the index $|N_G(A):AC_G(A)|$ is equal to the unit or a prime.
Keywords: finite group, subgroup, normalizer, centralizer.
@article{TIMM_2013_19_3_a2,
     author = {V. A. Antonov},
     title = {On groups with relatively small normalizers of nonabelian subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {23--28},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a2/}
}
TY  - JOUR
AU  - V. A. Antonov
TI  - On groups with relatively small normalizers of nonabelian subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 23
EP  - 28
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a2/
LA  - ru
ID  - TIMM_2013_19_3_a2
ER  - 
%0 Journal Article
%A V. A. Antonov
%T On groups with relatively small normalizers of nonabelian subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 23-28
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a2/
%G ru
%F TIMM_2013_19_3_a2
V. A. Antonov. On groups with relatively small normalizers of nonabelian subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 23-28. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a2/

[1] Smith S. D., Tyrer A. P., “On finite groups with a certain Sylow normalizer. I”, J. Algebra, 26:2 (1973), 343–365 | DOI | MR | Zbl

[2] Antonov V. A., “Lokalno konechnye gruppy s malymi normalizatorami”, Mat. zametki, 41:3 (1987), 296–302 | MR | Zbl

[3] Antonov V. A., “Lokalno konechnye gruppy s malymi normalizatorami, 2”, Izv. vuzov. Matematika, 1989, no. 1, 12–14 | MR | Zbl

[4] Amineva N. N., Antonov V. A., “O gruppakh s otnositelno bolshimi tsentralizatorami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 2, 2001, 27–33 | MR

[5] Amineva N. N., Antonov V. A., “O gruppakh s otnositelno bolshimi tsentralizatorami”, Izv. vuzov. Matematika, 2003, no. 7, 8–17 ; “Исправление: ‘Письмо в редакцию’ ”, Изв. вузов, 2004, No 5, 90 | MR | Zbl | MR

[6] Amineva N. N., Antonov V. A., “On finite 2-groups with relatively large centralizers of noninvariant subgroups”, Acta Appl. Math., 85:1 (2005), 11–15 | DOI | MR | Zbl

[7] Antonov V. A., Nozhkina T. G., “O konechnykh nilpotentnykh gruppakh s otnositelno bolshimi tsentralizatorami neinvariantnykh podgrupp”, Izv. vuzov. Matematika, 2011, no. 10, 12–16 | MR | Zbl

[8] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR | Zbl

[9] Carter R. G., Simple groups of Lie type, Wiley, London, 1972, 331 pp. | MR | Zbl

[10] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[11] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl

[12] Antonov V. A., “O gruppakh s otnositelno malymi normalizatorami vsekh (vsekh abelevykh) podgrupp”, Teoriya grupp i ee prilozheniya, Cb. tr. Vosmoi mezhdunar. shk.-konf., KBGU, Nalchik, 2010, 8–17