Generation of a~finite group with Hall maximal subgroups by a~pair of conjugate elements
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 199-206
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a finite group $G$, the set of all prime divisors of $|G|$ is denoted by $\pi(G)$. P. Shumyatskii introduced the following conjecture, which is included in the “Kourovka Notebook” as Question 17.125: a finite group $G$ always contains a pair of conjugate elements $a$ and $b$ such that $\pi(G)=\pi(\langle a,b\rangle)$. Denote by $\mathfrak Y$ the class of all finite groups $G$ such that $\pi(H)\ne\pi(G)$ for every maximal subgroup $H$ in $G$. Shumyatskii's conjecture is equivalent to the following conjecture: every group from $\mathfrak Y$ is generated by two conjugate elements. Let $\mathfrak V$ be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that $\mathfrak V\subseteq\mathfrak Y$. We prove that every group from $\mathfrak V$ is generated by two conjugate elements. Thus, Shumyatskii's conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatskii's conjecture.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, generation by a pair of conjugate elements, Hall subgroup, maximal subgroup, prime spectrum.
                    
                  
                
                
                @article{TIMM_2013_19_3_a19,
     author = {N. V. Maslova and D. O. Revin},
     title = {Generation of a~finite group with {Hall} maximal subgroups by a~pair of conjugate elements},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--206},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/}
}
                      
                      
                    TY - JOUR AU - N. V. Maslova AU - D. O. Revin TI - Generation of a~finite group with Hall maximal subgroups by a~pair of conjugate elements JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 199 EP - 206 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/ LA - ru ID - TIMM_2013_19_3_a19 ER -
%0 Journal Article %A N. V. Maslova %A D. O. Revin %T Generation of a~finite group with Hall maximal subgroups by a~pair of conjugate elements %J Trudy Instituta matematiki i mehaniki %D 2013 %P 199-206 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/ %G ru %F TIMM_2013_19_3_a19
N. V. Maslova; D. O. Revin. Generation of a~finite group with Hall maximal subgroups by a~pair of conjugate elements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 199-206. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/
