Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 199-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a finite group $G$, the set of all prime divisors of $|G|$ is denoted by $\pi(G)$. P. Shumyatskii introduced the following conjecture, which is included in the “Kourovka Notebook” as Question 17.125: a finite group $G$ always contains a pair of conjugate elements $a$ and $b$ such that $\pi(G)=\pi(\langle a,b\rangle)$. Denote by $\mathfrak Y$ the class of all finite groups $G$ such that $\pi(H)\ne\pi(G)$ for every maximal subgroup $H$ in $G$. Shumyatskii's conjecture is equivalent to the following conjecture: every group from $\mathfrak Y$ is generated by two conjugate elements. Let $\mathfrak V$ be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that $\mathfrak V\subseteq\mathfrak Y$. We prove that every group from $\mathfrak V$ is generated by two conjugate elements. Thus, Shumyatskii's conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatskii's conjecture.
Keywords: finite group, generation by a pair of conjugate elements, Hall subgroup, maximal subgroup, prime spectrum.
@article{TIMM_2013_19_3_a19,
     author = {N. V. Maslova and D. O. Revin},
     title = {Generation of a~finite group with {Hall} maximal subgroups by a~pair of conjugate elements},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--206},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. O. Revin
TI  - Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 199
EP  - 206
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/
LA  - ru
ID  - TIMM_2013_19_3_a19
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. O. Revin
%T Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 199-206
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/
%G ru
%F TIMM_2013_19_3_a19
N. V. Maslova; D. O. Revin. Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 199-206. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a19/

[1] Kondratev A. S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2009, 310 pp.

[2] Kourovskaya tetrad, Nereshennye voprosy teorii grupp, Izd. 17-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 219 pp. http://math.nsc.ru/~alglog/17kt.pdf

[3] Levchuk V. M., Likharev A. G., “Konechnye prostye gruppy s dopolnyaemymi maksimalnymi podgruppami”, Sib. mat. zhurn., 47:4 (2006), 798–810 | MR | Zbl

[4] Mazurov V. D., Shi V., “Kriterii neraspoznavaemosti konechnoi gruppy po spektru”, Algebra i logika, 51:2 (2012), 239–243 | MR | Zbl

[5] Maslova N. V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. mat. zhurn., 53:5 (2012), 1065–1076 | MR | Zbl

[6] Maslova N. V., Revin D. O., “Konechnye gruppy, v kotorykh vse maksimalnye podgruppy khollovy”, Mat. trudy, 15:2 (2012), 105–126 | MR

[7] Monakhov V. S., “Konechnye $\pi$-razreshimye gruppy s khollovymi maksimalnymi podgruppami”, Mat. zametki, 84:3 (2008), 390–394 | DOI | MR | Zbl

[8] Tikhonenko T. V., Tyutyanov V. N., “Konechnye gruppy s maksimalnymi khollovymi podgruppami”, Izv. Gomel. gos. un-ta im. F. Skoriny, 2008, no. 5(50), 198–206

[9] Tyutyanov V. N., “Konechnye gruppy s dopolnyaemymi podgruppami”, Izv. Gomel. gos. un-ta im. F. Skoriny, 2006, no. 3(36), 178–183

[10] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[11] J. H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[12] Robert Wilson [et. al.], Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/

[13] Feit W., Thompson J. G., “Solvability of groups of odd order”, Pacif. J. Math., 13:3 (1964), 775–1029 | DOI | MR

[14] Guralnick R. M., Kantor W. M., “Probabilistic generation of finite simple groups”, J. Algebra, 234:2 (2000), 743–792 | DOI | MR | Zbl

[15] Hall P., “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | MR | Zbl

[16] Lucchini A., Morigi M., Shumyatsky P., “Boundedly generated subgroups of finite groups”, Forum Math., 24:4 (2012), 875–887 | DOI | MR | Zbl