Keywords: regular suborbit.
@article{TIMM_2013_19_3_a18,
author = {A. V. Konygin},
title = {On {Cameron's} question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {187--198},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/}
}
TY - JOUR AU - A. V. Konygin TI - On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 187 EP - 198 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/ LA - ru ID - TIMM_2013_19_3_a18 ER -
%0 Journal Article %A A. V. Konygin %T On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them %J Trudy Instituta matematiki i mehaniki %D 2013 %P 187-198 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/ %G ru %F TIMM_2013_19_3_a18
A. V. Konygin. On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/
[1] Konygin A. V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh”, Sib. elektron. mat. izv., 5 (2008), 387–406 | MR
[2] Konygin A. V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh: sluchai, kogda tsokol est stepen sporadicheskoi prostoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 159–167
[3] Kourovskaya tetrad, Nereshennye voprosy teorii grupp, Izd. 17-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 219 pp.
[4] Kertis Ch., Rainer I., Teoriya predstavleniya konechnykh grupp i assotsiativnykh algebr, Nauka, Moskva, 1969, 669 pp. | MR
[5] Aschbacher M., “The 27-dimensional module for $E_6$, I”, Invent. Math., 89 (1987), 159–195 | DOI | MR | Zbl
[6] Aschbacher M., “The 27-dimensional module for $E_6$, II”, J. London Math. Soc. (2), 37 (1988), 275–293 | DOI | MR | Zbl
[7] Aschbacher M., “The 27-dimensional module for $E_6$, III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 | MR | Zbl
[8] J. H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl
[9] Cameron P. J., “Suborbits in transitive permutation groups”, Combinatorics, Proc. NATO Advanced Study Inst. (Breukelen, 1974), Part 3: Combinatorial Group Theory, Mathematical Centre Tracts, 57, Math. Centrum, Amsterdam, 1974, 98–129 | MR
[10] Hulpke A., Seress Á., “Short presentations for three-dimensional unitary groups”, J. Algebra, 245:2 (2001), 719–729 | DOI | MR | Zbl
[11] Kleidman P. B., “The maximal subgroups of the Steinberg triality group $^3D_4(q)$ and their automorphism groups”, J. Algebra, 115:1 (1988), 182–199 | DOI | MR | Zbl
[12] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan–Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Ser. A, 44:3 (1988), 389–396 | DOI | MR | Zbl
[13] Liebeck M. W., Saxl J., “On the orders of maximal subgroups of the finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 55:2 (1987), 299–330 | DOI | MR | Zbl
[14] Liebeck M. W., Saxl J., Seitz G. M., “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992), 297–325 | DOI | MR | Zbl
[15] Liebeck M. W., Seitz G. M., “A survey of maximal subgroups of exceptional groups of Lie type”, Groups, combinatorics and geometry (Durham, 2001), World Sci. Publ., River Edge, 2003, 139–146 | MR | Zbl
[16] Liebeck M. W., Seitz G. M., “Maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Geom. Dedicata, 35:1–3 (1990), 353–387 | MR | Zbl
[17] Reitz H. L., “On primitive groups of odd order”, Amer. J. Math., 26 (1904), 1–30 | DOI | MR
[18] Cohen A. M., Liebeck M. W., Saxl J., Seitz G. M., “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Mat. Soc. (3), 64 (1992), 21–48 | DOI | MR
[19] Weiss M. J., “On simply transitive groups”, Bull. Amer. Math. Soc., 40:6 (1934), 401–405 | DOI | MR | Zbl
[20] Wielandt H., Finite permutation groups, Acad. Press, New York, 1964, 114 pp. | MR | Zbl
[21] Wilson R. A., The finite simple groups, Springer, London, 2009, 298 pp. | MR