On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x,y}\trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x,y}=1$ in this case. The author proved earlier that, if $\mathrm{soc}(G)$ is not a direct power of an exceptional group of Lie type, then $G_{x,y}=1$. In the present paper, we prove that, if $\mathrm{soc}(G)$ is a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x,y}=1$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
primitive permutation group
Keywords: regular suborbit.
                    
                  
                
                
                Keywords: regular suborbit.
@article{TIMM_2013_19_3_a18,
     author = {A. V. Konygin},
     title = {On {Cameron's} question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--198},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/}
}
                      
                      
                    TY - JOUR AU - A. V. Konygin TI - On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 187 EP - 198 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/ LA - ru ID - TIMM_2013_19_3_a18 ER -
%0 Journal Article %A A. V. Konygin %T On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them %J Trudy Instituta matematiki i mehaniki %D 2013 %P 187-198 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/ %G ru %F TIMM_2013_19_3_a18
A. V. Konygin. On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/
