On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x,y}\trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x,y}=1$ in this case. The author proved earlier that, if $\mathrm{soc}(G)$ is not a direct power of an exceptional group of Lie type, then $G_{x,y}=1$. In the present paper, we prove that, if $\mathrm{soc}(G)$ is a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x,y}=1$.
Mots-clés : primitive permutation group
Keywords: regular suborbit.
@article{TIMM_2013_19_3_a18,
     author = {A. V. Konygin},
     title = {On {Cameron's} question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--198},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 187
EP  - 198
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/
LA  - ru
ID  - TIMM_2013_19_3_a18
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 187-198
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/
%G ru
%F TIMM_2013_19_3_a18
A. V. Konygin. On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/