On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x,y}\trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x,y}=1$ in this case. The author proved earlier that, if $\mathrm{soc}(G)$ is not a direct power of an exceptional group of Lie type, then $G_{x,y}=1$. In the present paper, we prove that, if $\mathrm{soc}(G)$ is a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x,y}=1$.
Mots-clés : primitive permutation group
Keywords: regular suborbit.
@article{TIMM_2013_19_3_a18,
     author = {A. V. Konygin},
     title = {On {Cameron's} question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--198},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 187
EP  - 198
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/
LA  - ru
ID  - TIMM_2013_19_3_a18
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 187-198
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/
%G ru
%F TIMM_2013_19_3_a18
A. V. Konygin. On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 187-198. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a18/

[1] Konygin A. V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh”, Sib. elektron. mat. izv., 5 (2008), 387–406 | MR

[2] Konygin A. V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh: sluchai, kogda tsokol est stepen sporadicheskoi prostoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 159–167

[3] Kourovskaya tetrad, Nereshennye voprosy teorii grupp, Izd. 17-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 219 pp.

[4] Kertis Ch., Rainer I., Teoriya predstavleniya konechnykh grupp i assotsiativnykh algebr, Nauka, Moskva, 1969, 669 pp. | MR

[5] Aschbacher M., “The 27-dimensional module for $E_6$, I”, Invent. Math., 89 (1987), 159–195 | DOI | MR | Zbl

[6] Aschbacher M., “The 27-dimensional module for $E_6$, II”, J. London Math. Soc. (2), 37 (1988), 275–293 | DOI | MR | Zbl

[7] Aschbacher M., “The 27-dimensional module for $E_6$, III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 | MR | Zbl

[8] J. H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Cameron P. J., “Suborbits in transitive permutation groups”, Combinatorics, Proc. NATO Advanced Study Inst. (Breukelen, 1974), Part 3: Combinatorial Group Theory, Mathematical Centre Tracts, 57, Math. Centrum, Amsterdam, 1974, 98–129 | MR

[10] Hulpke A., Seress Á., “Short presentations for three-dimensional unitary groups”, J. Algebra, 245:2 (2001), 719–729 | DOI | MR | Zbl

[11] Kleidman P. B., “The maximal subgroups of the Steinberg triality group $^3D_4(q)$ and their automorphism groups”, J. Algebra, 115:1 (1988), 182–199 | DOI | MR | Zbl

[12] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan–Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Ser. A, 44:3 (1988), 389–396 | DOI | MR | Zbl

[13] Liebeck M. W., Saxl J., “On the orders of maximal subgroups of the finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 55:2 (1987), 299–330 | DOI | MR | Zbl

[14] Liebeck M. W., Saxl J., Seitz G. M., “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992), 297–325 | DOI | MR | Zbl

[15] Liebeck M. W., Seitz G. M., “A survey of maximal subgroups of exceptional groups of Lie type”, Groups, combinatorics and geometry (Durham, 2001), World Sci. Publ., River Edge, 2003, 139–146 | MR | Zbl

[16] Liebeck M. W., Seitz G. M., “Maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Geom. Dedicata, 35:1–3 (1990), 353–387 | MR | Zbl

[17] Reitz H. L., “On primitive groups of odd order”, Amer. J. Math., 26 (1904), 1–30 | DOI | MR

[18] Cohen A. M., Liebeck M. W., Saxl J., Seitz G. M., “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Mat. Soc. (3), 64 (1992), 21–48 | DOI | MR

[19] Weiss M. J., “On simply transitive groups”, Bull. Amer. Math. Soc., 40:6 (1934), 401–405 | DOI | MR | Zbl

[20] Wielandt H., Finite permutation groups, Acad. Press, New York, 1964, 114 pp. | MR | Zbl

[21] Wilson R. A., The finite simple groups, Springer, London, 2009, 298 pp. | MR