On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 179-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G=SL_n(q)$, where $n\geq2$ and $q$ is a power of a prime $p$. A Zinger cycle of the group $G$ is its cyclic subgroup of order $(q^n-1)/(q-1)$. Here absolutely irreducible $G$-modules over a field of the defining characteristic $p$ where an element of a fixed prime order $m$ from a Zinger cycle of $G$ acts freely are classified in the following three cases: a) the residue of $q$ modulo $m$ generates the multiplicative group of the field of order $m$ (in particular, this holds for $m=3$); b) $m=5$; c) $n=2$.
Keywords: special linear group, Zinger cycle, absolutely irreducible module, free action of an element.
@article{TIMM_2013_19_3_a17,
     author = {A. S. Kondrat'ev and A. A. Osinovskaya and I. D. Suprunenko},
     title = {On the behavior of elements of prime order from {a~Zinger} cycle in representations of a~special linear group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {179--186},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - A. A. Osinovskaya
AU  - I. D. Suprunenko
TI  - On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 179
EP  - 186
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/
LA  - ru
ID  - TIMM_2013_19_3_a17
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A A. A. Osinovskaya
%A I. D. Suprunenko
%T On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 179-186
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/
%G ru
%F TIMM_2013_19_3_a17
A. S. Kondrat'ev; A. A. Osinovskaya; I. D. Suprunenko. On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 179-186. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/

[1] Burbaki N., Gruppy i algebry Li, Gl. VII–VIII, Mir, M., 1978, 342 pp. | MR

[2] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[3] Kondratev A. S., “O konechnykh gruppakh s nebolshim prostym spektrom”, Gruppy i grafy, Itogi nauki. Yug Rossii. Mat. forum, 6, Vladikavkaz, 2012, 56–74

[4] Mazurov V. D., “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta, 2005, no. 36, Matematika i mekhanika, vyp. 7, 119–138 | MR | Zbl

[5] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 263 pp. | MR | Zbl

[6] Suprunenko I. D., “Sokhranenie sistem vesov neprivodimykh predstavlenii algebraicheskoi gruppy i algebry Li tipa $A_l$ s ogranichennymi starshimi vesami pri reduktsii po modulyu $p$”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1983, no. 2, 18–22 | MR | Zbl

[7] Fleischmann P., Lempken W., Zalesskii A. E., “Linear groups over $GF(2^k)$ generated by a conjugacy class of a fixed point free element of order 3”, J. Algebra, 244:2 (2001), 631–663 | DOI | MR | Zbl

[8] Higman G., Odd characterizations of finite simple groups, Lecture notes, University Michigan, Michigan, 1968, 77 pp.

[9] Humphreys J. E., “Representations of $SL(2,p)$”, Amer. Math. Monthly, 82:1 (1975), 21–39 | DOI | MR | Zbl

[10] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl

[11] Steinberg R., “Representations of algebraic groups”, Nagoya Math. J., 22 (1963), 33–56 | MR | Zbl

[12] Stewart W. B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc. (3), 26:4 (1973), 653–680 | DOI | MR | Zbl

[13] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[14] Wilson R., “Certain representations of Chevalley groups over $CF(2^n)$”, Comm. Algebra, 3:4 (1975), 319–364 | DOI | MR | Zbl

[15] Zalesski A. E., “On eigenvalues of group elements in representations of algebraic groups and finite Chevalley groups”, Acta Appl. Math., 108:1 (2009), 175–195 | DOI | MR | Zbl

[16] Zavarnitsine A. V., “Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups”, Sib. elektron. mat. izv., 8 (2011), 333–340 | MR