On the behavior of elements of prime order from a~Zinger cycle in representations of a~special linear group
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 179-186
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G=SL_n(q)$, where $n\geq2$ and $q$ is a power of a prime $p$. A Zinger cycle of the group $G$ is its cyclic subgroup of order $(q^n-1)/(q-1)$. Here absolutely irreducible $G$-modules over a field of the defining characteristic $p$ where an element of a fixed prime order $m$ from a Zinger cycle of $G$ acts freely are classified in the following three cases: a) the residue of $q$ modulo $m$ generates the multiplicative group of the field of order $m$ (in particular, this holds for $m=3$); b) $m=5$; c) $n=2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
special linear group, Zinger cycle, absolutely irreducible module, free action of an element.
                    
                  
                
                
                @article{TIMM_2013_19_3_a17,
     author = {A. S. Kondrat'ev and A. A. Osinovskaya and I. D. Suprunenko},
     title = {On the behavior of elements of prime order from {a~Zinger} cycle in representations of a~special linear group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/}
}
                      
                      
                    TY - JOUR AU - A. S. Kondrat'ev AU - A. A. Osinovskaya AU - I. D. Suprunenko TI - On the behavior of elements of prime order from a~Zinger cycle in representations of a~special linear group JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 179 EP - 186 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/ LA - ru ID - TIMM_2013_19_3_a17 ER -
%0 Journal Article %A A. S. Kondrat'ev %A A. A. Osinovskaya %A I. D. Suprunenko %T On the behavior of elements of prime order from a~Zinger cycle in representations of a~special linear group %J Trudy Instituta matematiki i mehaniki %D 2013 %P 179-186 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/ %G ru %F TIMM_2013_19_3_a17
A. S. Kondrat'ev; A. A. Osinovskaya; I. D. Suprunenko. On the behavior of elements of prime order from a~Zinger cycle in representations of a~special linear group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 179-186. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a17/
