On subgroups that cover only $\mathfrak F$-central chief factors in finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 158-163
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The authors call an element $x$ of a finite group $G$ $Q\mathfrak F$-supercentral if every chief factor $A/B$ of $G$ for which $x\in A\backslash B$ is $\mathfrak F$-central. The connection between $Q\mathfrak F$-supercentral elements of $G$ and its chief factors is investigated. In the case when $\mathfrak F$ is a nonempty saturated formation, the properties of subgroups that cover all $\mathfrak F$-central chief factors of $G$ and isolate all $\mathfrak F$-eccentric chief factors are investigated (the authors call these subgroups $\mathfrak F$-isolators). The connection between $\mathfrak F$-isolators and $\mathfrak F$-normalizers of $G$ is established.
Keywords: finite group, saturated formation, $Q\mathfrak F$-supercentral element, $\mathfrak F$-normalizer, $\mathfrak F$-isolator.
@article{TIMM_2013_19_3_a15,
     author = {S. F. Kamornikov and O. L. Shemetkova},
     title = {On subgroups that cover only $\mathfrak F$-central chief factors in finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {158--163},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a15/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - O. L. Shemetkova
TI  - On subgroups that cover only $\mathfrak F$-central chief factors in finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 158
EP  - 163
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a15/
LA  - ru
ID  - TIMM_2013_19_3_a15
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A O. L. Shemetkova
%T On subgroups that cover only $\mathfrak F$-central chief factors in finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 158-163
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a15/
%G ru
%F TIMM_2013_19_3_a15
S. F. Kamornikov; O. L. Shemetkova. On subgroups that cover only $\mathfrak F$-central chief factors in finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 158-163. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a15/

[1] Al-Sharo Kh. A., Shemetkov L. A., “O podgruppakh prostogo poryadka v konechnoi gruppe”, Ukr. mat. zhurn., 54:6 (2002), 745–752 | MR | Zbl

[2] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] Doerk K., Hawkes T. O., Finite soluble groups, Walter de Gruyte, Berlin–New-York, 1992, 891 pp. | MR

[4] Carter R. W., Hawkes T. O., “The $\mathfrak F$-normalizers of a finite soluble groups”, J. Algebra, 5:2 (1967), 175–201 | DOI | MR

[5] Shemetkov L. A., “Faktorizatsii neprostykh konechnykh grupp”, Algebra i logika, 15:6 (1976), 684–715 | MR | Zbl

[6] Gillam J. D., “Cover-avoid subgroups in finite solvable groups”, J. Algebra, 29:2 (1974), 324–329 | DOI | MR | Zbl