On Ditsman's lemma
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 150-157
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $H$ be a subgroup of a group $G$ generated by a finite $G$-invariant subset $X=\bigcup_{i=1}^kC_i$ that consists of elements of finite order, where $C_i$ is the class of conjugate elements of $G$ with representative $a_i$. We prove that 
$$
|H|\leq\prod_{i=1}^ko(a_i)^{|C_i|},
$$
where $o(a_i)$ is the order of the element $a_i\in C_i$. Best estimates are obtained for some important special cases.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
simple group, Lie type group, sporadic simple group, quasisimple group.
                    
                  
                
                
                @article{TIMM_2013_19_3_a14,
     author = {L. S. Kazarin},
     title = {On {Ditsman's} lemma},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a14/}
}
                      
                      
                    L. S. Kazarin. On Ditsman's lemma. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 150-157. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a14/
