On Ditsman's lemma
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 150-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $H$ be a subgroup of a group $G$ generated by a finite $G$-invariant subset $X=\bigcup_{i=1}^kC_i$ that consists of elements of finite order, where $C_i$ is the class of conjugate elements of $G$ with representative $a_i$. We prove that $$ |H|\leq\prod_{i=1}^ko(a_i)^{|C_i|}, $$ where $o(a_i)$ is the order of the element $a_i\in C_i$. Best estimates are obtained for some important special cases.
Mots-clés : simple group, Lie type group, sporadic simple group, quasisimple group.
@article{TIMM_2013_19_3_a14,
     author = {L. S. Kazarin},
     title = {On {Ditsman's} lemma},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--157},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a14/}
}
TY  - JOUR
AU  - L. S. Kazarin
TI  - On Ditsman's lemma
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 150
EP  - 157
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a14/
LA  - ru
ID  - TIMM_2013_19_3_a14
ER  - 
%0 Journal Article
%A L. S. Kazarin
%T On Ditsman's lemma
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 150-157
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a14/
%G ru
%F TIMM_2013_19_3_a14
L. S. Kazarin. On Ditsman's lemma. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 150-157. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a14/

[1] Belonogov V. A., Zadachnik po teorii grupp, Nauka, M., 2000, 239 pp.

[2] Grechkoseeva M. A., “O minimalnykh podstanovochnykh predstavleniyakh klassicheskikh prostykh grupp”, Sib. mat. zhurn., 44:3 (2003), 560–586 | MR | Zbl

[3] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR | Zbl

[4] Ditsman A. P., “O $p$-gruppakh”, Dokl. AN SSSR, 15 (1937), 71–76

[5] Kazarin L. S., “O $p^\alpha$-lemme Bernsaida”, Mat. zametki, 48:2 (1990), 45–48 | MR | Zbl

[6] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR | Zbl

[7] Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh klassicheskikh prostykh grupp. Spetsialnye lineinye, simplekticheskie i unitarnye gruppy”, Algebra i logika, 32:3 (1993), 267–287 | MR | Zbl

[8] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Brauer R., Fong P., “On the centralizers of $p$-elements in finite groups”, Bull. London Math. Soc., 6 (1974), 319–324 | DOI | MR | Zbl

[10] Maróti A., “On the orders of primitive groups”, J. Algebra, 258:2 (2002), 631–640 | DOI | MR | Zbl