On intersections of nilpotent subgroups in finite symmetric and alternating groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 144-149

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in a nonsolvable finite symmetric or alternating group, for any pair of nilpotent subgroups, there exists a subgroup conjugate to one of them such that its intersection with the other subgroup is trivial, except for the group $S_8$.
Keywords: maximal nilpotent subgroup, symmetric group, alternating group.
@article{TIMM_2013_19_3_a13,
     author = {V. I. Zenkov},
     title = {On intersections of nilpotent subgroups in finite symmetric and alternating groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {144--149},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections of nilpotent subgroups in finite symmetric and alternating groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 144
EP  - 149
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/
LA  - ru
ID  - TIMM_2013_19_3_a13
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections of nilpotent subgroups in finite symmetric and alternating groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 144-149
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/
%G ru
%F TIMM_2013_19_3_a13
V. I. Zenkov. On intersections of nilpotent subgroups in finite symmetric and alternating groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 144-149. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/