On intersections of nilpotent subgroups in finite symmetric and alternating groups
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 144-149
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that, in a nonsolvable finite symmetric or alternating group, for any pair of nilpotent subgroups, there exists a subgroup conjugate to one of them such that its intersection with the other subgroup is trivial, except for the group $S_8$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
maximal nilpotent subgroup, symmetric group, alternating group.
                    
                  
                
                
                @article{TIMM_2013_19_3_a13,
     author = {V. I. Zenkov},
     title = {On intersections of nilpotent subgroups in finite symmetric and alternating groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {144--149},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/}
}
                      
                      
                    TY - JOUR AU - V. I. Zenkov TI - On intersections of nilpotent subgroups in finite symmetric and alternating groups JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 144 EP - 149 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/ LA - ru ID - TIMM_2013_19_3_a13 ER -
V. I. Zenkov. On intersections of nilpotent subgroups in finite symmetric and alternating groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 144-149. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a13/
