On a first-order accurate difference scheme for a singularly perturbed problem with a turning point
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 120-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A singularly perturbed problem with a turning point is considered. The solution has a boundary layer of exponential type in a neighborhood of a boundary point. The problem is solved approximately by means of a difference scheme of exponential fitting on a uniform grid. It is proved that the solutions obtained from this scheme converge uniformly with respect to the perturbation parameter with the first order of accuracy to the solution of the original differential problem as the grid step tends to zero.
Keywords: singularly perturbed problem for a second-order ordinary differential equation, asymptotic expansion, difference scheme.
@article{TIMM_2013_19_3_a11,
     author = {K. V. Emel'yanov},
     title = {On a~first-order accurate difference scheme for a~singularly perturbed problem with a~turning point},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--135},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/}
}
TY  - JOUR
AU  - K. V. Emel'yanov
TI  - On a first-order accurate difference scheme for a singularly perturbed problem with a turning point
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 120
EP  - 135
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/
LA  - ru
ID  - TIMM_2013_19_3_a11
ER  - 
%0 Journal Article
%A K. V. Emel'yanov
%T On a first-order accurate difference scheme for a singularly perturbed problem with a turning point
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 120-135
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/
%G ru
%F TIMM_2013_19_3_a11
K. V. Emel'yanov. On a first-order accurate difference scheme for a singularly perturbed problem with a turning point. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 120-135. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/

[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 232 pp.

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl

[4] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1968, 464 pp.

[5] Emelyanov K. V., “Raznostnaya skhema podgonki dlya singulyarno vozmuschennoi zadachi s tochkoi povorota”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 80–91

[6] Shishkin G. I., Titov V. A., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri proizvodnykh”, Chislennye metody mekhaniki sploshnoi sredy, 1:2 (1976), 145–155

[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 553 pp. | MR | Zbl