@article{TIMM_2013_19_3_a11,
author = {K. V. Emel'yanov},
title = {On a~first-order accurate difference scheme for a~singularly perturbed problem with a~turning point},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {120--135},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/}
}
TY - JOUR AU - K. V. Emel'yanov TI - On a first-order accurate difference scheme for a singularly perturbed problem with a turning point JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 120 EP - 135 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/ LA - ru ID - TIMM_2013_19_3_a11 ER -
K. V. Emel'yanov. On a first-order accurate difference scheme for a singularly perturbed problem with a turning point. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 120-135. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a11/
[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl
[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 232 pp.
[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl
[4] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1968, 464 pp.
[5] Emelyanov K. V., “Raznostnaya skhema podgonki dlya singulyarno vozmuschennoi zadachi s tochkoi povorota”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 80–91
[6] Shishkin G. I., Titov V. A., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri proizvodnykh”, Chislennye metody mekhaniki sploshnoi sredy, 1:2 (1976), 145–155
[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 553 pp. | MR | Zbl