Net rings normalized by a nonsplit maximal torus
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 113-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate net rings $M(\sigma)$ normalized by a torus $T=T(d)$, which is the image of the multiplicative group of the radical extension $K=k(\sqrt[n]d)$ (of degree $n$ of a field $k$, $char(k)\neq2$) under the regular embedding into $G=GL(n,k)$. It is shown that the structure of these net rings is determined by a certain subring of the ground field $k$. Necessary and sufficient conditions are obtained for the normalizability of a net ring $M(\sigma)$ by the torus $T=T(d)$ for the case when the ground field $k=\mathbb Q$ is the field of rational numbers. We also study transvection modules and factor rings of intermediate subgroups $H$, $T\subseteq H\subseteq G$.
Mots-clés : net, nonsplit maximal torus
Keywords: net ring, intermediate subgroup.
@article{TIMM_2013_19_3_a10,
     author = {N. A. Dzhusoeva},
     title = {Net rings normalized by a~nonsplit maximal torus},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {113--119},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a10/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
TI  - Net rings normalized by a nonsplit maximal torus
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 113
EP  - 119
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a10/
LA  - ru
ID  - TIMM_2013_19_3_a10
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%T Net rings normalized by a nonsplit maximal torus
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 113-119
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a10/
%G ru
%F TIMM_2013_19_3_a10
N. A. Dzhusoeva. Net rings normalized by a nonsplit maximal torus. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 113-119. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a10/

[1] Borevich Z. I., “O podgruppakh lineinykh grupp, bogatykh transvektsiyamich”, Zap. nauch. seminarov LOMI, 75, 1978, 22–31 | MR | Zbl

[2] Borevich Z. I., Koibaev V. A., “O koltsakh mnozhitelei, svyazannykh s promezhutochnymi podgruppami dlya kvadratichnykh torov”, Vestn. SPbGU. Ser. 1, 1993, no. 2, 5–10 | MR | Zbl

[3] Borevich Z. I., Koibaev V. A., Chan Ngok Khoi, “Reshetki podgrupp v $GL(2,Q)$, soderzhaschikh nerasschepimyi tor”, Zap. nauch. seminarov POMI, 191, 1991, 24–43 | MR | Zbl

[4] Dzhusoeva N. A., Koibaev V. A., “Maksimalnye podgruppy, soderzhaschie tor, svyazannye s polem otnoshenii dedekindovoi oblasti”, Zap. nauch. seminarov POMI, 289, 2002, 149–153 | MR | Zbl

[5] Koibaev V. A., “Podgruppy gruppy $GL(2,Q)$, soderzhaschie nerasschepimyi maksimalnyi tor”, Dokl. AN SSSR, 312:1 (1990), 36–38 | MR

[6] Koibaev V. A., “Podgruppy gruppy $GL(2,K)$, soderzhaschie nerasschepimyi maksimalnyi tor”, Zap. nauch. seminarov POMI, 211, 1994, 136–145 | MR