Small ranks of central unit groups of integral group rings of alternating groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 15-22
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that the ranks of central unit groups of integral group rings of alternating groups of degrees greater than 38 are at least 11. The presented tables contain ranks of all central unit groups of integral group rings of alternating groups of degrees at most 200. In particular, for every $r\in\{0,\dots,10\}$, we obtain the complete list of integers $n$ such that the central unit group of the integral group ring of the alternating group of degree $n$ has rank $r$.
Keywords: alternating group, group ring, central unit, rank of abelian group
Mots-clés : partition.
@article{TIMM_2013_19_3_a1,
     author = {R. Zh. Aleev},
     title = {Small ranks of central unit groups of integral group rings of alternating groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {15--22},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a1/}
}
TY  - JOUR
AU  - R. Zh. Aleev
TI  - Small ranks of central unit groups of integral group rings of alternating groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 15
EP  - 22
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a1/
LA  - ru
ID  - TIMM_2013_19_3_a1
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%T Small ranks of central unit groups of integral group rings of alternating groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 15-22
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a1/
%G ru
%F TIMM_2013_19_3_a1
R. Zh. Aleev. Small ranks of central unit groups of integral group rings of alternating groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 15-22. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a1/

[1] Aleev R. Zh., Kargapolov A. V., Sokolov V. V., “Rangi grupp tsentralnykh edinits tselochislennykh gruppovykh kolets znakoperemennykh grupp”, Fundament. i prikl. matematika, 14:7 (2008), 15–21 | MR

[2] Kargapolov A. V., “Parallelnyi algoritm dlya nakhozhdeniya rangov grupp tsentralnykh edinits tselochislennykh gruppovykh kolets znakoperemennykh grupp”, Algoritmy i program. sredstva paral. vychislenii, Cb. nauch. tr. Vyp. 10, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2009, 8–12

[3] Kargapolov A. V., Tsentralnye edinitsy tselochislennykh gruppovykh kolets znakoperemennykh grupp, Dis. $\dots$ kand. fiz.-mat. nauk, Chelyabinsk, 2012, 87 pp.

[4] Frobenius G., Teoriya kharakterov i predstavlenii grupp, per. s nem., ed. A. K. Sushkevich, KomKniga, M., 2005, 216 pp.

[5] Ferraz R. A., “Simple components and central units in group algebras”, J. Algebra, 279:1 (2004), 191–203 | DOI | MR | Zbl