Generalized Newton method for linear optimization problems with inequality constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 98-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A dual problem of linear programming (LP) is reduced to the unconstrained maximization of a concave piecewise quadratic function for sufficiently large values of a certain parameter. An estimate is given for the threshold value of the parameter starting from which the projection of a given point on the set of solutions of the dual LP problem in dual and auxiliary variables is easily found by means of a single solution of an unconstrained maximization problem. The unconstrained maximization is carried out by the generalized Newton method, which is globally convergent in a finite number of steps. The results of numerical experiments are presented for randomly generated large-scale LP problems.
Keywords: linear programming problem, piecewise quadratic function, unconstrained maximization, generalized Newton method.
@article{TIMM_2013_19_2_a9,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {Generalized {Newton} method for linear optimization problems with inequality constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--108},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/}
}
TY  - JOUR
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - Generalized Newton method for linear optimization problems with inequality constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 98
EP  - 108
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/
LA  - ru
ID  - TIMM_2013_19_2_a9
ER  - 
%0 Journal Article
%A A. I. Golikov
%A Yu. G. Evtushenko
%T Generalized Newton method for linear optimization problems with inequality constraints
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 98-108
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/
%G ru
%F TIMM_2013_19_2_a9
A. I. Golikov; Yu. G. Evtushenko. Generalized Newton method for linear optimization problems with inequality constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/

[1] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp. | MR | Zbl

[2] Eremin I. I., Mazurov Vl. D., Voprosy optimizatsii i raspoznavaniya obrazov, Sred.-Ural. knizh. izd-vo, Sverdlovsk, 1979, 64 pp.

[3] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[4] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl

[5] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.

[6] Eremin I. I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzhno-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR

[7] Eremin I. I., Popov L. D., “Vnutrennie shtrafnye funktsii i dvoistvennost v lineinom programmirovanii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 83–89

[8] Golikov A. I., Evtushenko Yu. G., “Metod resheniya zadach lineinogo programmirovaniya bolshoi razmernosti”, Dokl. RAN, 397:6 (2004), 727–732 | MR

[9] Golikov A. I., Evtushenko Yu. G., Mollaverdi N., “Primenenie metoda Nyutona k resheniyu zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 44:9 (2004), 1564–1573 | MR | Zbl

[10] Mangasarian O. L., “A finite Newton method for classification”, Optim. Methods Softw., 17:5 (2002), 913–929 | DOI | MR | Zbl

[11] Mangasarian O. L., “A Newton method for linear programming”, J. Optim. Theory and Appl., 121 (2004), 1–18 | DOI | MR | Zbl

[12] Kanzow C., Qi H., Qi L., “On the minimum norm solution of linear programs”, J. Optim. Theory and Appl., 116 (2003), 333–345 | DOI | MR | Zbl

[13] Garanzha V. A., Golikov A. I., Evtushenko Yu. G., Nguen M. Kh., “Parallelnaya realizatsiya metoda Nyutona dlya resheniya bolshikh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:8 (2009), 1369–1384 | MR | Zbl

[14] Golikov A. I., Evtushenko Yu. G., “Nakhozhdenie proektsii zadannoi tochki na mnozhestvo reshenii zadach lineinogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 33–47 | Zbl

[15] Eremin I. I., “O kvadratichnykh zadachakh i polnokvadratichnykh zadachakh vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1998, no. 12, 22–28 | MR | Zbl

[16] Kaporin I. E., “High quality preconditioning of a general symmetric positive definite matrix based on its UTU+UTR+RTU-decomposition”, Numer. Linear Algebra Appl., 5:6 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Popov L. D., “Kvadratichnaya approksimatsiya shtrafnykh funktsii pri reshenii zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:2 (2007), 206–221 | MR | Zbl