Generalized Newton method for linear optimization problems with inequality constraints
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 98-108
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A dual problem of linear programming (LP) is reduced to the unconstrained maximization of a concave piecewise quadratic function for sufficiently large values of a certain parameter. An estimate is given for the threshold value of the parameter starting from which the projection of a given point on the set of solutions of the dual LP problem in dual and auxiliary variables is easily found by means of a single solution of an unconstrained maximization problem. The unconstrained maximization is carried out by the generalized Newton method, which is globally convergent in a finite number of steps. The results of numerical experiments are presented for randomly generated large-scale LP problems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear programming problem, piecewise quadratic function, unconstrained maximization, generalized Newton method.
                    
                  
                
                
                @article{TIMM_2013_19_2_a9,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {Generalized {Newton} method for linear optimization problems with inequality constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/}
}
                      
                      
                    TY - JOUR AU - A. I. Golikov AU - Yu. G. Evtushenko TI - Generalized Newton method for linear optimization problems with inequality constraints JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 98 EP - 108 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/ LA - ru ID - TIMM_2013_19_2_a9 ER -
%0 Journal Article %A A. I. Golikov %A Yu. G. Evtushenko %T Generalized Newton method for linear optimization problems with inequality constraints %J Trudy Instituta matematiki i mehaniki %D 2013 %P 98-108 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/ %G ru %F TIMM_2013_19_2_a9
A. I. Golikov; Yu. G. Evtushenko. Generalized Newton method for linear optimization problems with inequality constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/
