Generalized Newton method for linear optimization problems with inequality constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 98-108

Voir la notice de l'article provenant de la source Math-Net.Ru

A dual problem of linear programming (LP) is reduced to the unconstrained maximization of a concave piecewise quadratic function for sufficiently large values of a certain parameter. An estimate is given for the threshold value of the parameter starting from which the projection of a given point on the set of solutions of the dual LP problem in dual and auxiliary variables is easily found by means of a single solution of an unconstrained maximization problem. The unconstrained maximization is carried out by the generalized Newton method, which is globally convergent in a finite number of steps. The results of numerical experiments are presented for randomly generated large-scale LP problems.
Keywords: linear programming problem, piecewise quadratic function, unconstrained maximization, generalized Newton method.
@article{TIMM_2013_19_2_a9,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {Generalized {Newton} method for linear optimization problems with inequality constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/}
}
TY  - JOUR
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - Generalized Newton method for linear optimization problems with inequality constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 98
EP  - 108
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/
LA  - ru
ID  - TIMM_2013_19_2_a9
ER  - 
%0 Journal Article
%A A. I. Golikov
%A Yu. G. Evtushenko
%T Generalized Newton method for linear optimization problems with inequality constraints
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 98-108
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/
%G ru
%F TIMM_2013_19_2_a9
A. I. Golikov; Yu. G. Evtushenko. Generalized Newton method for linear optimization problems with inequality constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a9/