Mots-clés : Fejér approximation.
@article{TIMM_2013_19_2_a8,
author = {V. V. Vasin},
title = {Modified {Newton-type} processes generating {Fej\'er} approximations of regularized solutions to nonlinear equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {85--97},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/}
}
TY - JOUR AU - V. V. Vasin TI - Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 85 EP - 97 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/ LA - ru ID - TIMM_2013_19_2_a8 ER -
V. V. Vasin. Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 85-97. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/
[1] Bakushinskii A. B., “Regulyarizuyuschii algoritm na osnove metoda Nyutona–Kantorovicha dlya resheniya variatsionnykh neravenstv”, Zhurn. vychisl. matematiki i mat. fiziki, 16:6 (1976), 1397–1404 | MR | Zbl
[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR
[3] Bakushinskii A. B., “K probleme skhodimosti iterativno regulyarizovannogo metoda Gaussa–Nyutona”, Zhurn. vychisl. matematiki i mat. fiziki, 32:9 (1992), 1503–1509 | MR | Zbl
[4] Hanke M., “The regularizing Levenberg–Marquardt scheme is optimal order”, J. Integral Equations Appls., 22:2 (2010), 259–282 | DOI | MR
[5] Vasin V. V., “Metod Levenberga–Markvardta dlya approksimatsii reshenii neregulyarnykh operatornykh uravnenii”, Avtomatika i telemekhanika, 2012, no. 3, 28–38
[6] Vasin V. V., “Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation”, J. Inv. Ill-Posed Problems, 21:1 (2013), 109–123 | MR
[7] George S., “On convergence of regularized modified Newton's method for nonlinear ill-posed problems”, J. Inv. Ill-Posed Problems, 18:2 (2010), 133–146 | MR
[8] Vasin V. V., “Iteratsionnye metody resheniya nekorrektnykh zadach s apriornoi informatsiei v gilbertovykh prostranstvakh”, Zhurn. vychisl. matematiki i mat. fiziki, 28:7 (1988), 971–980 | MR | Zbl
[9] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, UIF “Nauka”, Ekaterinburg, 1993, 262 pp. | MR
[10] Vasin V. V., Eremin I. I., Operatory i protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 200 pp. | MR
[11] Martinet B., “Determination approachee d'un point fixe d'une application pseudo-contractante. Cas de l'application prox”, C. R. Acad. Sci. Paris. Ser. A–B, 274 (1972), A163–A165 | MR
[12] Eremin I. I., “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Mat. zametki, 3:2 (1968), 217–234 | MR
[13] Eremin I. I., “K obschei teorii feierovskikh otobrazhenii”, Mat. zapiski Ural. gos. un-ta, 7:2 (1969), 50–58 | MR | Zbl
[14] Eremin I. I., “Primenenie metoda feierovskikh priblizhenii k resheniyu zadach vypuklogo programmirovanii s negladkimi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 9:5 (1969), 1153–1160 | MR | Zbl
[15] Mukhamadiev E. M., Morozov V. A., Nazimov A. B., “K probleme regulyarizatsii sdvigom vyrozhdennykh sistem lineinykh algebraicheskikh uravnenii”, Dokl. RAN, 419:4 (2008), 454–457 | MR | Zbl
[16] Mukhamadiev E. M., Morozov V. A., Nazimov A. B., “O probleme regulyarizatsii sdvigom vyrozhdennykh sistem lineinykh algebraicheskikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 47:12 (2007), 1971–1978 | MR
[17] A. B. Nazimov, E. M. Mukhamadiev, V. A. Morozov, M. Mullodzhanov, Metod regulyarizatsii sdvigom. Teoriya i prilozheniya, Izd-vo Vologod. gos. tekhn. un-ta, Vologda, 2012, 368 pp.
[18] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR | Zbl
[19] Fejér L., “Über die Lag der Nullstrellen von Polynomen, die aus minimumforderung gewisser Art entspringen”, Math. Ann., 85:1 (1992), 41–48 | DOI | MR
[20] Motzkin T. S., Schoenberg J. J., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–404 | DOI | MR | Zbl