Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 85-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate a two-stage algorithm for the construction of a regularizing algorithm that solves approximately a nonlinear irregular operator equation. First, the initial equation is regularized by a shift (Lavrent'ev's scheme). To approximate a solution of the regularized equation, we apply modified Newton and Gauss–Newton type methods, in which the derivative of the operator is calculated at a fixed point for all iterations. Convergence theorems for the processes, error estimates, and the Fejer property of iterations are established.
Keywords: irregular operator equations, modified Newton-type method
Mots-clés : Fejér approximation.
@article{TIMM_2013_19_2_a8,
     author = {V. V. Vasin},
     title = {Modified {Newton-type} processes generating {Fej\'er} approximations of regularized solutions to nonlinear equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {85--97},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/}
}
TY  - JOUR
AU  - V. V. Vasin
TI  - Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 85
EP  - 97
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/
LA  - ru
ID  - TIMM_2013_19_2_a8
ER  - 
%0 Journal Article
%A V. V. Vasin
%T Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 85-97
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/
%G ru
%F TIMM_2013_19_2_a8
V. V. Vasin. Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 85-97. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a8/

[1] Bakushinskii A. B., “Regulyarizuyuschii algoritm na osnove metoda Nyutona–Kantorovicha dlya resheniya variatsionnykh neravenstv”, Zhurn. vychisl. matematiki i mat. fiziki, 16:6 (1976), 1397–1404 | MR | Zbl

[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[3] Bakushinskii A. B., “K probleme skhodimosti iterativno regulyarizovannogo metoda Gaussa–Nyutona”, Zhurn. vychisl. matematiki i mat. fiziki, 32:9 (1992), 1503–1509 | MR | Zbl

[4] Hanke M., “The regularizing Levenberg–Marquardt scheme is optimal order”, J. Integral Equations Appls., 22:2 (2010), 259–282 | DOI | MR

[5] Vasin V. V., “Metod Levenberga–Markvardta dlya approksimatsii reshenii neregulyarnykh operatornykh uravnenii”, Avtomatika i telemekhanika, 2012, no. 3, 28–38

[6] Vasin V. V., “Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation”, J. Inv. Ill-Posed Problems, 21:1 (2013), 109–123 | MR

[7] George S., “On convergence of regularized modified Newton's method for nonlinear ill-posed problems”, J. Inv. Ill-Posed Problems, 18:2 (2010), 133–146 | MR

[8] Vasin V. V., “Iteratsionnye metody resheniya nekorrektnykh zadach s apriornoi informatsiei v gilbertovykh prostranstvakh”, Zhurn. vychisl. matematiki i mat. fiziki, 28:7 (1988), 971–980 | MR | Zbl

[9] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, UIF “Nauka”, Ekaterinburg, 1993, 262 pp. | MR

[10] Vasin V. V., Eremin I. I., Operatory i protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 200 pp. | MR

[11] Martinet B., “Determination approachee d'un point fixe d'une application pseudo-contractante. Cas de l'application prox”, C. R. Acad. Sci. Paris. Ser. A–B, 274 (1972), A163–A165 | MR

[12] Eremin I. I., “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Mat. zametki, 3:2 (1968), 217–234 | MR

[13] Eremin I. I., “K obschei teorii feierovskikh otobrazhenii”, Mat. zapiski Ural. gos. un-ta, 7:2 (1969), 50–58 | MR | Zbl

[14] Eremin I. I., “Primenenie metoda feierovskikh priblizhenii k resheniyu zadach vypuklogo programmirovanii s negladkimi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 9:5 (1969), 1153–1160 | MR | Zbl

[15] Mukhamadiev E. M., Morozov V. A., Nazimov A. B., “K probleme regulyarizatsii sdvigom vyrozhdennykh sistem lineinykh algebraicheskikh uravnenii”, Dokl. RAN, 419:4 (2008), 454–457 | MR | Zbl

[16] Mukhamadiev E. M., Morozov V. A., Nazimov A. B., “O probleme regulyarizatsii sdvigom vyrozhdennykh sistem lineinykh algebraicheskikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 47:12 (2007), 1971–1978 | MR

[17] A. B. Nazimov, E. M. Mukhamadiev, V. A. Morozov, M. Mullodzhanov, Metod regulyarizatsii sdvigom. Teoriya i prilozheniya, Izd-vo Vologod. gos. tekhn. un-ta, Vologda, 2012, 368 pp.

[18] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR | Zbl

[19] Fejér L., “Über die Lag der Nullstrellen von Polynomen, die aus minimumforderung gewisser Art entspringen”, Math. Ann., 85:1 (1992), 41–48 | DOI | MR

[20] Motzkin T. S., Schoenberg J. J., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–404 | DOI | MR | Zbl