Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 71-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A compact expression is found for the value of the best integral approximation of the linear combination $\lambda P_r+\mu Q_r$, where $P_r$ is the Poisson kernel and $Q_r$ is its conjugate, by trigonometric polynomials of a given order in the form of a combination of the functions $\arctan$ and $\ln$. For $\mu=0$, the expression is Krein's result, and, for $\lambda=0$, it is Nagy's result. If $\lambda\mu\not=0$, the expression is much simpler than the representation in the form of a series found by Bushanskii. It is shown that, if the function of limit values on the unit circle $\Gamma$ of the real part $u=\mathrm{Re}F$ of a certain function $F=u+iv$ that is analytic inside the unit circle and such that $\|u\|_{L(\Gamma)}\le1$ is known, then the problem of the best integral approximation of the linear combination $\lambda u+\mu v$ on a concentric circle of radius $r1$ by algebraic polynomials is reduced to the integral approximation of the kernel $\lambda P_r+\mu Q_r$ on the period $[0,2\pi)$ by trigonometric polynomials.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
best approximation, trigonometric polynomial, harmonic function
Mots-clés : algebraic polynomial, class of convolutions, Poisson kernel.
                    
                  
                
                
                Mots-clés : algebraic polynomial, class of convolutions, Poisson kernel.
@article{TIMM_2013_19_2_a6,
     author = {N. A. Baraboshkina},
     title = {Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--78},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/}
}
                      
                      
                    TY - JOUR AU - N. A. Baraboshkina TI - Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 71 EP - 78 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/ LA - ru ID - TIMM_2013_19_2_a6 ER -
%0 Journal Article %A N. A. Baraboshkina %T Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle %J Trudy Instituta matematiki i mehaniki %D 2013 %P 71-78 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/ %G ru %F TIMM_2013_19_2_a6
N. A. Baraboshkina. Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 71-78. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/
