Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 71-78
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A compact expression is found for the value of the best integral approximation of the linear combination $\lambda P_r+\mu Q_r$, where $P_r$ is the Poisson kernel and $Q_r$ is its conjugate, by trigonometric polynomials of a given order in the form of a combination of the functions $\arctan$ and $\ln$. For $\mu=0$, the expression is Krein's result, and, for $\lambda=0$, it is Nagy's result. If $\lambda\mu\not=0$, the expression is much simpler than the representation in the form of a series found by Bushanskii. It is shown that, if the function of limit values on the unit circle $\Gamma$ of the real part $u=\mathrm{Re}F$ of a certain function $F=u+iv$ that is analytic inside the unit circle and such that $\|u\|_{L(\Gamma)}\le1$ is known, then the problem of the best integral approximation of the linear combination $\lambda u+\mu v$ on a concentric circle of radius $r1$ by algebraic polynomials is reduced to the integral approximation of the kernel $\lambda P_r+\mu Q_r$ on the period $[0,2\pi)$ by trigonometric polynomials.
Keywords: best approximation, trigonometric polynomial, harmonic function
Mots-clés : algebraic polynomial, class of convolutions, Poisson kernel.
@article{TIMM_2013_19_2_a6,
     author = {N. A. Baraboshkina},
     title = {Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--78},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/}
}
TY  - JOUR
AU  - N. A. Baraboshkina
TI  - Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 71
EP  - 78
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/
LA  - ru
ID  - TIMM_2013_19_2_a6
ER  - 
%0 Journal Article
%A N. A. Baraboshkina
%T Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 71-78
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/
%G ru
%F TIMM_2013_19_2_a6
N. A. Baraboshkina. Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 71-78. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/

[1] Akhiezer N. I., “O nailuchshem priblizhenii analiticheskikh funktsii”, Dokl. AN SSSR, 18:4–5 (1938), 241–244 | Zbl

[2] Baraboshkina N. A., “Priblizhenie v $L$ lineinoi kombinatsii yadra Puassona i ego sopryazhennogo trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 79–86

[3] Baraboshkina N. A., “Integralnoe priblizhenie lineinoi kombinatsii yadra Puassona i ego sopryazhennogo”, Approx. Theory and Appl., Abstracts of Intern. sonf. dedicated N. P. Korneichuk memory, Dnepropetrovsk National University, Dnepropetrovsk, 2010, 21–22

[4] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl

[5] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[6] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR

[7] Nikolskii S. M., Izbr. tr., v 3 t., v. 1, Priblizhenie funktsii trigonometricheskimi polinomami v srednem, Nauka, M., 2006, 209 pp.

[8] Parfenenkov A. V., “Nailuchshee prodolzhenie algebraicheskikh mnogochlenov s edinichnoi okruzhnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2000, 184–194

[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR | Zbl

[10] Sobolev S. N., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[11] Serdyuk A. S., Sokolenko I. V., “Asymptotic behavior of best approximations of classes of Poisson integrals of functions from $H_\omega$”, J. Approx. Theory, 163:11 (2011), 1692–1706 | DOI | MR | Zbl