Voir la notice du chapitre de livre
Mots-clés : algebraic polynomial, class of convolutions, Poisson kernel.
@article{TIMM_2013_19_2_a6,
author = {N. A. Baraboshkina},
title = {Approximation of harmonic functions by algebraic polynomials on a~circle of radius smaller than one with constraints on the unit circle},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {71--78},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/}
}
TY - JOUR AU - N. A. Baraboshkina TI - Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 71 EP - 78 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/ LA - ru ID - TIMM_2013_19_2_a6 ER -
%0 Journal Article %A N. A. Baraboshkina %T Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle %J Trudy Instituta matematiki i mehaniki %D 2013 %P 71-78 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/ %G ru %F TIMM_2013_19_2_a6
N. A. Baraboshkina. Approximation of harmonic functions by algebraic polynomials on a circle of radius smaller than one with constraints on the unit circle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 71-78. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a6/
[1] Akhiezer N. I., “O nailuchshem priblizhenii analiticheskikh funktsii”, Dokl. AN SSSR, 18:4–5 (1938), 241–244 | Zbl
[2] Baraboshkina N. A., “Priblizhenie v $L$ lineinoi kombinatsii yadra Puassona i ego sopryazhennogo trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 79–86
[3] Baraboshkina N. A., “Integralnoe priblizhenie lineinoi kombinatsii yadra Puassona i ego sopryazhennogo”, Approx. Theory and Appl., Abstracts of Intern. sonf. dedicated N. P. Korneichuk memory, Dnepropetrovsk National University, Dnepropetrovsk, 2010, 21–22
[4] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl
[5] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl
[6] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR
[7] Nikolskii S. M., Izbr. tr., v 3 t., v. 1, Priblizhenie funktsii trigonometricheskimi polinomami v srednem, Nauka, M., 2006, 209 pp.
[8] Parfenenkov A. V., “Nailuchshee prodolzhenie algebraicheskikh mnogochlenov s edinichnoi okruzhnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2000, 184–194
[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR | Zbl
[10] Sobolev S. N., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR
[11] Serdyuk A. S., Sokolenko I. V., “Asymptotic behavior of best approximations of classes of Poisson integrals of functions from $H_\omega$”, J. Approx. Theory, 163:11 (2011), 1692–1706 | DOI | MR | Zbl