Dual systems of homogeneous linear equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 48-53

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of dual system of homogeneous linear algebraic equations is introduced. A modification of the Gaussian elimination method for the simultaneous solution of primal and dual systems is proposed. An algorithm for solving a homogeneous system of linear equations is validated. The algorithm is based on the technique of the dual representation of the polyhedral cone and, thus, is dual to the known Gauss–Jordan method.
Keywords: dual systems, linear algebraic equations, Gaussian elimination method, dual method, polyhedral cone.
@article{TIMM_2013_19_2_a4,
     author = {N. N. Astaf'ev},
     title = {Dual systems of homogeneous linear equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--53},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a4/}
}
TY  - JOUR
AU  - N. N. Astaf'ev
TI  - Dual systems of homogeneous linear equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 48
EP  - 53
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a4/
LA  - ru
ID  - TIMM_2013_19_2_a4
ER  - 
%0 Journal Article
%A N. N. Astaf'ev
%T Dual systems of homogeneous linear equations
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 48-53
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a4/
%G ru
%F TIMM_2013_19_2_a4
N. N. Astaf'ev. Dual systems of homogeneous linear equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 48-53. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a4/