Nonconvex optimization with nonlinear support functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 295-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a special class of finite-dimensional optimization problems, in which the objective function and the constraint functions have convex support majorant functions and concave support minorant functions. For problems with inequality constraints, we propose and validate methods of successive convex optimization that converge to stationary solutions. For problems with equality constraints, we propose local search procedures with concave minorants.
Keywords: convex and concave support functions, local search, stationary point.
@article{TIMM_2013_19_2_a28,
     author = {O. V. Khamisov},
     title = {Nonconvex optimization with nonlinear support functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {295--306},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a28/}
}
TY  - JOUR
AU  - O. V. Khamisov
TI  - Nonconvex optimization with nonlinear support functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 295
EP  - 306
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a28/
LA  - ru
ID  - TIMM_2013_19_2_a28
ER  - 
%0 Journal Article
%A O. V. Khamisov
%T Nonconvex optimization with nonlinear support functions
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 295-306
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a28/
%G ru
%F TIMM_2013_19_2_a28
O. V. Khamisov. Nonconvex optimization with nonlinear support functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 295-306. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a28/

[1] Beckenbach E. F., “Generalized convex functions”, Bull. Am. Math. Soc., 43 (1937), 363–371 | DOI | MR | Zbl

[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[3] Kutateladze S. S., Rubinov A. M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976, 255 pp. | MR

[4] Palaschke D., Rolewicz S., Foundations of mathematical optimization. Convexity without linearity, Kluwer Acad. Publ., Dordrecht, 1997, 596 pp. | MR

[5] Rubinov A. M., Abstract convexity and global optimization, Kluwer Acad. Publ., Dordrecht, 2000, 495 pp. | MR

[6] Singer I., Abstract convex analysis, J. Wiley Sons, New York, 1997, 491 pp. | MR | Zbl

[7] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.

[8] Eremin I. I., Dvoistvennost v lineinoi optimizatsii, Izd-vo UrO RAN, Ekaterinburg, 2001, 180 pp.

[9] Eremin I. I., “Reshenie sistem vypuklykh vklyuchenii”, Metody vypuklogo programmirovaniya i nekotorye prilozheniya, Izd-vo UrO RAN, Sverdlovsk, 1992, 41–46

[10] Norkin V. I., “O metode Piyavskogo dlya resheniya obschei zadachi globalnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 32:7 (1992), 992–1006 | MR | Zbl

[11] Bulatov V. P., “Metody resheniya mnogoekstremalnykh zadach (globalnyi poisk)”, Metody optimizatsii i ikh prilozheniya. Ch. 1: Matematicheskoe programmirovanie, Nauka, Novosibirsk, 1989, 131–157

[12] Khamisov O. V., Functions with concave minorant, A general view: manuscript, Institut für Opeartions Research der Universität, Zurich, 1994, 25 pp.

[13] Khamisov O. V., “Globalnaya optimizatsiya funktsii s vognutoi opornoi minorantoi”, Zhurn. vychisl. matematiki i mat. fiziki, 47:11 (2004), 1830–1842 | MR

[14] Khamisov O. V., “On optimization properties of functions, with a concave minorant”, J. Global Optim., 14:1 (1999), 79–101 | DOI | MR | Zbl

[15] Ershov A. R., Khamisov O. V., “Avtomaticheskaya globalnaya optimizatsiya”, Diskret. analiz i issledovanie operatsii. Ser. 2, 11:2 (2004), 45–68 | MR

[16] Khamisov O. V., Metody vypuklykh i vognutykh opornykh funktsii v zadachakh globalnoi optimizatsii, Dis. $\dots$ d-ra fiz.-mat. nauk, Irkutsk, 2010, 275 pp.

[17] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[18] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl

[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[20] Bulatov V. P., Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 159 pp. | MR