@article{TIMM_2013_19_2_a28,
author = {O. V. Khamisov},
title = {Nonconvex optimization with nonlinear support functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {295--306},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a28/}
}
O. V. Khamisov. Nonconvex optimization with nonlinear support functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 295-306. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a28/
[1] Beckenbach E. F., “Generalized convex functions”, Bull. Am. Math. Soc., 43 (1937), 363–371 | DOI | MR | Zbl
[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl
[3] Kutateladze S. S., Rubinov A. M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976, 255 pp. | MR
[4] Palaschke D., Rolewicz S., Foundations of mathematical optimization. Convexity without linearity, Kluwer Acad. Publ., Dordrecht, 1997, 596 pp. | MR
[5] Rubinov A. M., Abstract convexity and global optimization, Kluwer Acad. Publ., Dordrecht, 2000, 495 pp. | MR
[6] Singer I., Abstract convex analysis, J. Wiley Sons, New York, 1997, 491 pp. | MR | Zbl
[7] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.
[8] Eremin I. I., Dvoistvennost v lineinoi optimizatsii, Izd-vo UrO RAN, Ekaterinburg, 2001, 180 pp.
[9] Eremin I. I., “Reshenie sistem vypuklykh vklyuchenii”, Metody vypuklogo programmirovaniya i nekotorye prilozheniya, Izd-vo UrO RAN, Sverdlovsk, 1992, 41–46
[10] Norkin V. I., “O metode Piyavskogo dlya resheniya obschei zadachi globalnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 32:7 (1992), 992–1006 | MR | Zbl
[11] Bulatov V. P., “Metody resheniya mnogoekstremalnykh zadach (globalnyi poisk)”, Metody optimizatsii i ikh prilozheniya. Ch. 1: Matematicheskoe programmirovanie, Nauka, Novosibirsk, 1989, 131–157
[12] Khamisov O. V., Functions with concave minorant, A general view: manuscript, Institut für Opeartions Research der Universität, Zurich, 1994, 25 pp.
[13] Khamisov O. V., “Globalnaya optimizatsiya funktsii s vognutoi opornoi minorantoi”, Zhurn. vychisl. matematiki i mat. fiziki, 47:11 (2004), 1830–1842 | MR
[14] Khamisov O. V., “On optimization properties of functions, with a concave minorant”, J. Global Optim., 14:1 (1999), 79–101 | DOI | MR | Zbl
[15] Ershov A. R., Khamisov O. V., “Avtomaticheskaya globalnaya optimizatsiya”, Diskret. analiz i issledovanie operatsii. Ser. 2, 11:2 (2004), 45–68 | MR
[16] Khamisov O. V., Metody vypuklykh i vognutykh opornykh funktsii v zadachakh globalnoi optimizatsii, Dis. $\dots$ d-ra fiz.-mat. nauk, Irkutsk, 2010, 275 pp.
[17] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[18] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl
[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[20] Bulatov V. P., Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 159 pp. | MR