@article{TIMM_2013_19_2_a27,
author = {R. T. Faizullin and V. I. Dul'keit and Yu. Yu. Ogorodnikov},
title = {Hybrid method for the approximate solution of the $3$-satisfiability problem associated with the factorization problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {285--294},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a27/}
}
TY - JOUR AU - R. T. Faizullin AU - V. I. Dul'keit AU - Yu. Yu. Ogorodnikov TI - Hybrid method for the approximate solution of the $3$-satisfiability problem associated with the factorization problem JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 285 EP - 294 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a27/ LA - ru ID - TIMM_2013_19_2_a27 ER -
%0 Journal Article %A R. T. Faizullin %A V. I. Dul'keit %A Yu. Yu. Ogorodnikov %T Hybrid method for the approximate solution of the $3$-satisfiability problem associated with the factorization problem %J Trudy Instituta matematiki i mehaniki %D 2013 %P 285-294 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a27/ %G ru %F TIMM_2013_19_2_a27
R. T. Faizullin; V. I. Dul'keit; Yu. Yu. Ogorodnikov. Hybrid method for the approximate solution of the $3$-satisfiability problem associated with the factorization problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 285-294. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a27/
[1] Daemon J., Knudsen L., Rijmen V., “The block cipher square”, Proc. of Fast Software Encryption97, Lect. Not. Comput. Sci., 1267, 1997, 149–165 | DOI
[2] Courtois N., Pipzyk J., “Cryptanalysis of block ciphers with overdefined systems of equations”, Proc. Asiacrypt02, Lect. Not. Comput. Sci., 2501, 2002, 267–287 | DOI | MR | Zbl
[3] Koblitz N., Menezes A., Vanstone S., “The state of elliptic curve cryptography”, Des. Codes Cryptogr., 19:2–3 (2000), 173–193 | DOI | MR | Zbl
[4] Cook S. A., Mitchel D. G., “Finding hard instances for the satisfiability problem: A survey”, Proc. Satisfiability problem: theory and applications, DIMACS: Ser. Discrete Math. Theoret. Comput. Sci., 35, Amer. Math. Soc., Providence, 1997, 1–18 | MR
[5] Gu J., Purdom P. W., Franco J., Wah B. W., “Algorithms for the satisfability (SAT) problem”, Proc. Satisfiability problem: theory and applications, DIMACS: Ser. Discrete Math. Theoret. Comput. Sci., 35, Amer. Math. Soc., Providence, 1997, 19–152 | MR
[6] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Fizmatlit, M., 1976, 192 pp. | MR
[7] Kreinovich V. Ya., “Semantika iterativnogo metoda S. Yu. Maslova”, Vopr. kibernetiki. Problemy sokrascheniya perebora, Izd-vo AN SSSR, M., 1987, 30–62 | MR
[8] Holland J. H., Adaptation in natural and artificial systems, An introductory analysis with applications to biology, control, and artificial intelligence, The University of Michigan Press, Ann Arbor, 1975, 183 pp. | MR
[9] Agrawal M., Kayal N., Saxena N., “PRIMES is in P”, Annal. of Math., 160:2 (2004), 781–793 | DOI | MR | Zbl
[10] Dulkeit V. I., Faizullin R. T., Khnykin I. G., “Algoritm minimizatsii funktsionala, assotsiirovannogo s zadachei 3-SAT i ego prakticheskie primeneniya”, Kompyuternaya optika, 32:1 (2008), 68–73
[11] Faizullin R. T., “Zadachi lineinoi algebry, sootnesennye s zadachei Vypolnimost”, Prikl. diskret. matematika, 2009, Prilozhenie No 1, 90–91
[12] Ogorodnikov Yu. Yu., Faizullin R. T., “Dvukhetapnyi metod poiska priblizhennogo resheniya zadachi Vypolnimost”, Dinamika sistem, mekhanizmov i mashin, Materialy 8-i Mezhdunar. nauch.-tekhn. konf., Omsk, 2012, 367–371