A method for constructing a resolving control in an approach problem based on attraction to the solvability set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 275-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of approach of a nonlinear control system to a compact target set in the phase space at a fixed time is studied. An algorithm for constructing a solution of this problem based on maximum attraction of the system's motion to the solvability set is proposed.
Keywords: control system, game problem of approach, reachable set, solvability set, integral funnel, invariance, weak invariance.
@article{TIMM_2013_19_2_a26,
     author = {V. N. Ushakov and A. R. Matviychuk and G. V. Parshikov},
     title = {A method for constructing a~resolving control in an approach problem based on attraction to the solvability set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {275--284},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. R. Matviychuk
AU  - G. V. Parshikov
TI  - A method for constructing a resolving control in an approach problem based on attraction to the solvability set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 275
EP  - 284
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/
LA  - ru
ID  - TIMM_2013_19_2_a26
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. R. Matviychuk
%A G. V. Parshikov
%T A method for constructing a resolving control in an approach problem based on attraction to the solvability set
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 275-284
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/
%G ru
%F TIMM_2013_19_2_a26
V. N. Ushakov; A. R. Matviychuk; G. V. Parshikov. A method for constructing a resolving control in an approach problem based on attraction to the solvability set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 275-284. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/

[1] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[2] Krasovskii N. N., Lektsii po teorii upravleniya. Vyp. 4: Osnovnaya igrovaya zadacha navedeniya. Pogloschenie tseli. Ekstremalnaya strategiya, Izd-vo Ural. gos. un-t, Sverdlovsk, 1970, 96 pp.

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, M., 1974, 456 pp. | MR | Zbl

[4] Pontryagin L. S., “O lineinykh differentsialnykh igrakh, I”, Dokl. AN SSSR, 156:4 (1964), 738–741 | Zbl

[5] Ushakov V. N., Matviichuk A. R., Ushakov A. V., Parshikov G. V., “Invariantnost mnozhestv pri konstruirovanii reshenii zadachi o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 264–283

[6] Ushakov V. N., Khripunov A. P., “Postroenie integralnykh voronok differentsialnykh vklyuchenii”, Zhurn. vychisl. matematiki i mat. fiziki, 34:7 (1994), 965–977 | MR | Zbl

[7] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “Ob approoksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 62:2 (1998), 179–187 | MR

[8] Ushakov V. N., Matviichuk A. R., Ushakov A. V., “Approksimatsiya mnozhestv dostizhimosti i integralnykh voronok”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 4, 23–39

[9] Nikolskii M. S., “Ob approksimatsii mnozhestva dostizhimosti differentsialnogo vklyucheniya”, Vestn. MGU. Ser. 15. Vychislit. matematika i kibernetika, 1987, no. 4, 31–34 | MR

[10] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl

[11] Kurzhanski A. A., Varaiya P., Ellipsoidal toolbox, URL: , 2005 http://code.google.com/p/ellipsoids

[12] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988, 319 pp. | MR

[13] Gusev M. I., “Otsenki mnozhestva dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94

[14] Filippova T. F., “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 223–232

[15] Kostousova E. K., “Ob ogranichennosti i neogranichennosti vneshnikh poliedalnykh otsenok mnozhestv dostizhimosti lineinykh differentsialnykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 134–145