@article{TIMM_2013_19_2_a26,
author = {V. N. Ushakov and A. R. Matviychuk and G. V. Parshikov},
title = {A method for constructing a~resolving control in an approach problem based on attraction to the solvability set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {275--284},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/}
}
TY - JOUR AU - V. N. Ushakov AU - A. R. Matviychuk AU - G. V. Parshikov TI - A method for constructing a resolving control in an approach problem based on attraction to the solvability set JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 275 EP - 284 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/ LA - ru ID - TIMM_2013_19_2_a26 ER -
%0 Journal Article %A V. N. Ushakov %A A. R. Matviychuk %A G. V. Parshikov %T A method for constructing a resolving control in an approach problem based on attraction to the solvability set %J Trudy Instituta matematiki i mehaniki %D 2013 %P 275-284 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/ %G ru %F TIMM_2013_19_2_a26
V. N. Ushakov; A. R. Matviychuk; G. V. Parshikov. A method for constructing a resolving control in an approach problem based on attraction to the solvability set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 275-284. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a26/
[1] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR
[2] Krasovskii N. N., Lektsii po teorii upravleniya. Vyp. 4: Osnovnaya igrovaya zadacha navedeniya. Pogloschenie tseli. Ekstremalnaya strategiya, Izd-vo Ural. gos. un-t, Sverdlovsk, 1970, 96 pp.
[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, M., 1974, 456 pp. | MR | Zbl
[4] Pontryagin L. S., “O lineinykh differentsialnykh igrakh, I”, Dokl. AN SSSR, 156:4 (1964), 738–741 | Zbl
[5] Ushakov V. N., Matviichuk A. R., Ushakov A. V., Parshikov G. V., “Invariantnost mnozhestv pri konstruirovanii reshenii zadachi o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 264–283
[6] Ushakov V. N., Khripunov A. P., “Postroenie integralnykh voronok differentsialnykh vklyuchenii”, Zhurn. vychisl. matematiki i mat. fiziki, 34:7 (1994), 965–977 | MR | Zbl
[7] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “Ob approoksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 62:2 (1998), 179–187 | MR
[8] Ushakov V. N., Matviichuk A. R., Ushakov A. V., “Approksimatsiya mnozhestv dostizhimosti i integralnykh voronok”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 4, 23–39
[9] Nikolskii M. S., “Ob approksimatsii mnozhestva dostizhimosti differentsialnogo vklyucheniya”, Vestn. MGU. Ser. 15. Vychislit. matematika i kibernetika, 1987, no. 4, 31–34 | MR
[10] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl
[11] Kurzhanski A. A., Varaiya P., Ellipsoidal toolbox, URL: , 2005 http://code.google.com/p/ellipsoids
[12] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988, 319 pp. | MR
[13] Gusev M. I., “Otsenki mnozhestva dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94
[14] Filippova T. F., “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 223–232
[15] Kostousova E. K., “Ob ogranichennosti i neogranichennosti vneshnikh poliedalnykh otsenok mnozhestv dostizhimosti lineinykh differentsialnykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 134–145