On the optimal correction of contradictory problems of convex programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 267-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some problems arising from the application of the regularized Lagrange function method for the optimal correction of convex programming problems in which the system of constraints can be contradictory are considered. Among the problems under consideration, there are the existence of an optimal correction vector, feasibility of an approximating problem and of the problem dual to it, and issues related to the regularization of improper problems. Agreement conditions for the regularization parameters and approximation error are established and convergence estimates are given.
Keywords: convex programming, improper problem, regularized Lagrange function method, regularization methods for ill-posed optimization problems.
Mots-clés : optimal correction
@article{TIMM_2013_19_2_a25,
     author = {V. D. Skarin},
     title = {On the optimal correction of contradictory problems of convex programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {267--274},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a25/}
}
TY  - JOUR
AU  - V. D. Skarin
TI  - On the optimal correction of contradictory problems of convex programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 267
EP  - 274
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a25/
LA  - ru
ID  - TIMM_2013_19_2_a25
ER  - 
%0 Journal Article
%A V. D. Skarin
%T On the optimal correction of contradictory problems of convex programming
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 267-274
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a25/
%G ru
%F TIMM_2013_19_2_a25
V. D. Skarin. On the optimal correction of contradictory problems of convex programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a25/

[1] Eremin I. I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[2] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[3] Skarin V. D., “O metode regulyarizatsii dlya protivorechivykh zadach vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1995, no. 12, 81–88 | MR | Zbl

[4] Popov L. D., “Primenenie modifitsirovannogo prox-metoda dlya optimalnoi korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, Ekaterinburg, 1995, 261–266 | MR | Zbl

[5] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp. | MR

[6] Skarin V. D., “O primenenii odnogo metoda regulyarizatsii dlya korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 230–241

[7] Eremin I. I., “O zadachakh vypuklogo programmirovaniya s protivorechivymi ogranicheniyami”, Kibernetika, 1971, no. 4, 124–129 | MR | Zbl

[8] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp. | MR | Zbl

[9] Elster K.-Kh., Reingardt R., Shoible M., Donat G., Vvedenie v nelineinoe programmirovanie, Nauka, M., 1985, 264 pp. | MR | Zbl

[10] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 472 pp.

[11] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR

[12] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[13] Skarin V. D., “Regulyarizovannaya funktsiya Lagranzha i metody korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 1, 2002, 116–146 | MR | Zbl