On the adaptation of the least squares method to improper problems of mathematical programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 247-255
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a modification of the least squares method, which allows to apply this method not only to usual feasible problems but also to improper problems of mathematical programming of the first kind. The method constructs the usual solution for feasible problems and a generalized solution for improper problems; the generalized solution has a very useful meaningful interpretation. We describe the algorithm, characterize the generalized solution, prove convergence theorems, and present results of numerical experiments.
Keywords: mathematical programming, improper problems, generalized solutions, least squares method.
@article{TIMM_2013_19_2_a23,
     author = {L. D. Popov},
     title = {On the adaptation of the least squares method to improper problems of mathematical programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--255},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - On the adaptation of the least squares method to improper problems of mathematical programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 247
EP  - 255
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/
LA  - ru
ID  - TIMM_2013_19_2_a23
ER  - 
%0 Journal Article
%A L. D. Popov
%T On the adaptation of the least squares method to improper problems of mathematical programming
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 247-255
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/
%G ru
%F TIMM_2013_19_2_a23
L. D. Popov. On the adaptation of the least squares method to improper problems of mathematical programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 247-255. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/

[1] Eremin I. I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[2] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[3] Eremin I. I., Theory of linear optimization, Ser. Inverse and Ill-Posed Problems, VSP, Utrecht, 2002, 336 pp. | MR

[4] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl

[5] Dantsig Dzh., Lineinoe programmirovanie, ego obobscheniya i primeneniya, Progress, M., 1966, 600 pp.

[6] I. I. Eremin, L. D. Popov (red.), Parametricheskaya optimizatsiya i metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Cb. st., Izd-vo UNTs AN SSSR, Sverdlovsk, 1985, 136 pp. | MR

[7] I. I. Eremin, A. A. Vatolin (red.), Issledovaniya po nesobstvennym zadacham optimizatsii, Cb. st., Izd-vo UrO AN SSSR, Sverdlovsk, 1988, 78 pp.

[8] I. I. Eremin, A. A. Vatolin (red.), Neregulyarnaya dvoistvennost v matematicheskom programmirovanii, Cb. st., Izd-vo UrO AN SSSR, Sverdlovsk, 1990, 80 pp.

[9] Eremin I. I., Popov L. D., “Dvoistvennost i feierovskie protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Optimizatsiya. Upravlenie. Intellekt, 2005, no. 9, 47–59 | MR

[10] Eremin I. I., Popov L. D., “Feierovskie protsessy v teorii i praktike: obzor poslednikh rezultatov”, Izv. vuzov. Matematika, 2009, no. 1, 44–65 | MR | Zbl

[11] Skarin V. D., “Approksimatsionnye i regulyarizatsionnye svoistva rasshirennykh shtrafnykh funktsii v vypuklom programmirovanii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 234–250

[12] Popov L. D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11

[13] Lebedev V. Yu., “Priblizhennyi algoritm resheniya zadachi LP”, Zhurn. vychisl. matematiki i mat. fiziki, 14:4 (1974), 1052–1058 | MR | Zbl

[14] Razumikhin B. S., “Metod kasatelnykh dlya stokhasticheskikh i dinamicheskikh zadach optimizatsii”, Avtomatika i telemekhanika, 1977, no. 1, 5–15 | Zbl

[15] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR

[16] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp. | MR

[17] Bregman L. M., “Nakhozhdenie obschei tochki vypuklykh mnozhestv metodom posledovatelnogo proektirovaniya”, Dokl. AN SSSR, 162:3 (1965), 487–490 | MR | Zbl

[18] Gurin L. G., Polyak B. T., Raik E. V., “Metody proektsii dlya otyskaniya obschei tochki vypuklykh mnozhestv”, Zhurn. vychisl. matematiki i mat. fiziki, 7:6 (1967), 1212–1228 | MR | Zbl

[19] Eremin I. I., “Obobschenie relaksatsionnogo metoda Motskina–Agmona”, Uspekhi mat. nauk, 20:2 (1965), 183–187 | MR | Zbl

[20] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 288 pp. | MR

[21] Eremin I. I., Popov L. D., “Zamknutye feierovskie tsikly dlya nesovmestnykh sistem vypuklykh neravenstv”, Izv. vuzov. Matematika, 2008, no. 1, 11–19 | MR