On the adaptation of the least squares method to improper problems of mathematical programming
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 247-255
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a modification of the least squares method, which allows to apply this method not only to usual feasible problems but also to improper problems of mathematical programming of the first kind. The method constructs the usual solution for feasible problems and a generalized solution for improper problems; the generalized solution has a very useful meaningful interpretation. We describe the algorithm, characterize the generalized solution, prove convergence theorems, and present results of numerical experiments.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mathematical programming, improper problems, generalized solutions, least squares method.
                    
                  
                
                
                @article{TIMM_2013_19_2_a23,
     author = {L. D. Popov},
     title = {On the adaptation of the least squares method to improper problems of mathematical programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/}
}
                      
                      
                    TY - JOUR AU - L. D. Popov TI - On the adaptation of the least squares method to improper problems of mathematical programming JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 247 EP - 255 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/ LA - ru ID - TIMM_2013_19_2_a23 ER -
L. D. Popov. On the adaptation of the least squares method to improper problems of mathematical programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 247-255. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/
