Voir la notice du chapitre de livre
@article{TIMM_2013_19_2_a23,
author = {L. D. Popov},
title = {On the adaptation of the least squares method to improper problems of mathematical programming},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {247--255},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/}
}
TY - JOUR AU - L. D. Popov TI - On the adaptation of the least squares method to improper problems of mathematical programming JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 247 EP - 255 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/ LA - ru ID - TIMM_2013_19_2_a23 ER -
L. D. Popov. On the adaptation of the least squares method to improper problems of mathematical programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 247-255. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a23/
[1] Eremin I. I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl
[2] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR
[3] Eremin I. I., Theory of linear optimization, Ser. Inverse and Ill-Posed Problems, VSP, Utrecht, 2002, 336 pp. | MR
[4] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl
[5] Dantsig Dzh., Lineinoe programmirovanie, ego obobscheniya i primeneniya, Progress, M., 1966, 600 pp.
[6] I. I. Eremin, L. D. Popov (red.), Parametricheskaya optimizatsiya i metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Cb. st., Izd-vo UNTs AN SSSR, Sverdlovsk, 1985, 136 pp. | MR
[7] I. I. Eremin, A. A. Vatolin (red.), Issledovaniya po nesobstvennym zadacham optimizatsii, Cb. st., Izd-vo UrO AN SSSR, Sverdlovsk, 1988, 78 pp.
[8] I. I. Eremin, A. A. Vatolin (red.), Neregulyarnaya dvoistvennost v matematicheskom programmirovanii, Cb. st., Izd-vo UrO AN SSSR, Sverdlovsk, 1990, 80 pp.
[9] Eremin I. I., Popov L. D., “Dvoistvennost i feierovskie protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Optimizatsiya. Upravlenie. Intellekt, 2005, no. 9, 47–59 | MR
[10] Eremin I. I., Popov L. D., “Feierovskie protsessy v teorii i praktike: obzor poslednikh rezultatov”, Izv. vuzov. Matematika, 2009, no. 1, 44–65 | MR | Zbl
[11] Skarin V. D., “Approksimatsionnye i regulyarizatsionnye svoistva rasshirennykh shtrafnykh funktsii v vypuklom programmirovanii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 234–250
[12] Popov L. D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11
[13] Lebedev V. Yu., “Priblizhennyi algoritm resheniya zadachi LP”, Zhurn. vychisl. matematiki i mat. fiziki, 14:4 (1974), 1052–1058 | MR | Zbl
[14] Razumikhin B. S., “Metod kasatelnykh dlya stokhasticheskikh i dinamicheskikh zadach optimizatsii”, Avtomatika i telemekhanika, 1977, no. 1, 5–15 | Zbl
[15] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR
[16] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp. | MR
[17] Bregman L. M., “Nakhozhdenie obschei tochki vypuklykh mnozhestv metodom posledovatelnogo proektirovaniya”, Dokl. AN SSSR, 162:3 (1965), 487–490 | MR | Zbl
[18] Gurin L. G., Polyak B. T., Raik E. V., “Metody proektsii dlya otyskaniya obschei tochki vypuklykh mnozhestv”, Zhurn. vychisl. matematiki i mat. fiziki, 7:6 (1967), 1212–1228 | MR | Zbl
[19] Eremin I. I., “Obobschenie relaksatsionnogo metoda Motskina–Agmona”, Uspekhi mat. nauk, 20:2 (1965), 183–187 | MR | Zbl
[20] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 288 pp. | MR
[21] Eremin I. I., Popov L. D., “Zamknutye feierovskie tsikly dlya nesovmestnykh sistem vypuklykh neravenstv”, Izv. vuzov. Matematika, 2008, no. 1, 11–19 | MR