Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 237-246
Voir la notice de l'article provenant de la source Math-Net.Ru
We study antipodal distance-regular graphs of diameter 3 such that their group of automorphisms acts transitively on the set of pairs $(a,b)$, where $\{a,b\}$ is an edge of the graph. Hence the group of automorphisms of the graph acts $2$-transitively on the set of antipodal classes, so the classification of $2$-transitive permutation groups can be used. We classify arc-transitive distance-regular graphs of diameter 3 in which any two vertices with distance at most two have exactly $\mu$ common neighbors.
Keywords:
arc-transitive graphs, antipodal distance-regular graphs, groups of automorphisms.
@article{TIMM_2013_19_2_a22,
author = {A. A. Makhnev and D. V. Paduchikh and L. Yu. Tsiovkina},
title = {Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {237--246},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/}
}
TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh AU - L. Yu. Tsiovkina TI - Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$ JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 237 EP - 246 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/ LA - ru ID - TIMM_2013_19_2_a22 ER -
%0 Journal Article %A A. A. Makhnev %A D. V. Paduchikh %A L. Yu. Tsiovkina %T Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$ %J Trudy Instituta matematiki i mehaniki %D 2013 %P 237-246 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/ %G ru %F TIMM_2013_19_2_a22
A. A. Makhnev; D. V. Paduchikh; L. Yu. Tsiovkina. Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/