Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 237-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study antipodal distance-regular graphs of diameter 3 such that their group of automorphisms acts transitively on the set of pairs $(a,b)$, where $\{a,b\}$ is an edge of the graph. Hence the group of automorphisms of the graph acts $2$-transitively on the set of antipodal classes, so the classification of $2$-transitive permutation groups can be used. We classify arc-transitive distance-regular graphs of diameter 3 in which any two vertices with distance at most two have exactly $\mu$ common neighbors.
Keywords: arc-transitive graphs, antipodal distance-regular graphs, groups of automorphisms.
@article{TIMM_2013_19_2_a22,
     author = {A. A. Makhnev and D. V. Paduchikh and L. Yu. Tsiovkina},
     title = {Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {237--246},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
AU  - L. Yu. Tsiovkina
TI  - Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 237
EP  - 246
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/
LA  - ru
ID  - TIMM_2013_19_2_a22
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%A L. Yu. Tsiovkina
%T Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 237-246
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/
%G ru
%F TIMM_2013_19_2_a22
A. A. Makhnev; D. V. Paduchikh; L. Yu. Tsiovkina. Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a22/

[1] Godsil C. D., Liebler R. A., Praeger C. E., “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 485 pp. | MR | Zbl

[3] Godsil C. D., Hensel A. D., “Distance regular covers of the complete graphs”, J. Comb. Theory Ser. B, 56 (1992), 205–238 | DOI | MR | Zbl

[4] Makhnev A. A., Paduchikh D. V., Tsiovkina L. Yu., “Reberno simmetrichnye distantsionno regulyarnye nakrytiya klik s $\lambda=\mu$”, Dokl. AN, 448:1 (2013), 22–26 | DOI | Zbl

[5] Neukirch J., Algebraic number theory, Grundlehren der mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999, 571 pp. | DOI | MR | Zbl

[6] Cameron P. J., Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[7] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515

[8] Makhnev A. A., Paduchikh D. V., “O gruppe avtomorfizmov grafa Ashbakhera”, Dokl. AN, 426:3 (2009), 310–313 | MR | Zbl

[9] Burichenko V. P., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{15,12,1;1,2,15\}$”, Dokl. AN, 445:4 (2012), 375–379 | MR | Zbl

[10] Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh klassicheskikh grupp. Spetsialnye lineinye, simplekticheskie i unitarnye gruppy”, Algebra i logika, 32:3 (1993), 267–287 | MR | Zbl