Boosting and the polynomial approximability of the problem on a~minimum affine separating committee
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 231-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the intractable problem on a minimum affine separating committee in a space of fixed dimension $n>1$ under the additional constraint that the separated sets are in general position (MASC-GP($n$)). For the investigation of the set of separable subsets that are maximal with respect to inclusion, we apply the game approach, which is traditional for boosting. We construct a polynomial approximate algorithm with guaranteed error estimate $O((m/n\ln m)^{1/2})$, where $m$ is the cardinality of the separated set.
Keywords: minimum affine separating committee problem, boosting, polynomial approximate algorithm, approximation error.
@article{TIMM_2013_19_2_a21,
     author = {Vl. D. Mazurov and M. Yu. Khachai},
     title = {Boosting and the polynomial approximability of the problem on a~minimum affine separating committee},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {231--236},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a21/}
}
TY  - JOUR
AU  - Vl. D. Mazurov
AU  - M. Yu. Khachai
TI  - Boosting and the polynomial approximability of the problem on a~minimum affine separating committee
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 231
EP  - 236
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a21/
LA  - ru
ID  - TIMM_2013_19_2_a21
ER  - 
%0 Journal Article
%A Vl. D. Mazurov
%A M. Yu. Khachai
%T Boosting and the polynomial approximability of the problem on a~minimum affine separating committee
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 231-236
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a21/
%G ru
%F TIMM_2013_19_2_a21
Vl. D. Mazurov; M. Yu. Khachai. Boosting and the polynomial approximability of the problem on a~minimum affine separating committee. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 231-236. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a21/