Generalization of two-dimensional radial wavelets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 224-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the generalization of two-dimensional radial wavelets. Direct and inverse integral wavelet transforms are constructed by means of elliptically symmetric wavelets. Theorems on the relation between functions and their integral wavelet transforms, on the convergence of the integral wavelet transform in $L^2(\mathbb R^2)$, and on the pointwise convergence of the inverse integral wavelet transform are proved.
Keywords: two-dimensional wavelets, continuous wavelets, integral wavelet transform
Mots-clés : inverse wavelet transform.
@article{TIMM_2013_19_2_a20,
     author = {T. O. Logvinova},
     title = {Generalization of two-dimensional radial wavelets},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--230},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a20/}
}
TY  - JOUR
AU  - T. O. Logvinova
TI  - Generalization of two-dimensional radial wavelets
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 224
EP  - 230
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a20/
LA  - ru
ID  - TIMM_2013_19_2_a20
ER  - 
%0 Journal Article
%A T. O. Logvinova
%T Generalization of two-dimensional radial wavelets
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 224-230
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a20/
%G ru
%F TIMM_2013_19_2_a20
T. O. Logvinova. Generalization of two-dimensional radial wavelets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 224-230. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a20/

[1] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 461 pp.

[2] Stein E., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 331 pp. | Zbl