Growth estimates for arbitrary sequences of multiple rectangular Fourier sums
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 26-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Growth estimates are obtained on a set of full measure for arbitrary sequences of rectangular partial sums of multiple trigonometric Fourier sums.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
trigonometric Fourier series, growth order almost everywhere.
                    
                  
                
                
                @article{TIMM_2013_19_2_a2,
     author = {N. Yu. Antonov},
     title = {Growth estimates for arbitrary sequences of multiple rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/}
}
                      
                      
                    TY - JOUR AU - N. Yu. Antonov TI - Growth estimates for arbitrary sequences of multiple rectangular Fourier sums JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 26 EP - 33 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/ LA - ru ID - TIMM_2013_19_2_a2 ER -
N. Yu. Antonov. Growth estimates for arbitrary sequences of multiple rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 26-33. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/
