Growth estimates for arbitrary sequences of multiple rectangular Fourier sums
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 26-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Growth estimates are obtained on a set of full measure for arbitrary sequences of rectangular partial sums of multiple trigonometric Fourier sums.
Keywords: trigonometric Fourier series, growth order almost everywhere.
@article{TIMM_2013_19_2_a2,
     author = {N. Yu. Antonov},
     title = {Growth estimates for arbitrary sequences of multiple rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - Growth estimates for arbitrary sequences of multiple rectangular Fourier sums
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 26
EP  - 33
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/
LA  - ru
ID  - TIMM_2013_19_2_a2
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T Growth estimates for arbitrary sequences of multiple rectangular Fourier sums
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 26-33
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/
%G ru
%F TIMM_2013_19_2_a2
N. Yu. Antonov. Growth estimates for arbitrary sequences of multiple rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 26-33. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a2/