Modernization of the stop-loss start-gain strategy for hedging an option position
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 179-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Issues of hedging option positions by an American call-option seller are considered. The stop-loss start-gain strategy is modified by introducing a hedging “insensitivity” band. Average losses of a hedger using this method of hedging are calculated. An optimal width of the “insensitivity” band for minimizing the hedger's average losses is chosen.
Keywords: option hedging, stop-loss start-gain strategy, Wiener process, distribution of the number of crossings of a strip, optimal hedging band.
@article{TIMM_2013_19_2_a16,
     author = {A. I. Kibzun and V. R. Sobol'},
     title = {Modernization of the stop-loss start-gain strategy for hedging an option position},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {179--192},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a16/}
}
TY  - JOUR
AU  - A. I. Kibzun
AU  - V. R. Sobol'
TI  - Modernization of the stop-loss start-gain strategy for hedging an option position
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 179
EP  - 192
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a16/
LA  - ru
ID  - TIMM_2013_19_2_a16
ER  - 
%0 Journal Article
%A A. I. Kibzun
%A V. R. Sobol'
%T Modernization of the stop-loss start-gain strategy for hedging an option position
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 179-192
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a16/
%G ru
%F TIMM_2013_19_2_a16
A. I. Kibzun; V. R. Sobol'. Modernization of the stop-loss start-gain strategy for hedging an option position. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 179-192. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a16/

[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Polit. Econ., 81:3 (1973), 637–654 | DOI | Zbl

[2] Cox J. C., Ross R. A., Rubinstein M., “Option Pricing: a simplified approach”, J. Finan. Econ., 7 (1979), 229–263 | DOI | Zbl

[3] Shiryaev A.N., Kabanov Yu. M., Kramkov D.O., Melnikov A. V., “K teorii raschetov optsionov evropeiskogo i amerikanskogo tipov. I: Diskretnoe vremya”, Teoriya veroyatnostei i ee primeneniya, 39:1 (1994), 23–79 | MR | Zbl

[4] Seidenverg E., “A case of confused identity”, Finan. Analysts J., 44 (1988), 63–67 | DOI

[5] Cox J., Rubinstein M., Option markets, Prentice-Hall, New York, 1985, 432 pp.

[6] Burenin A. N., Fyuchersnye, forvardnye i optsionnye rynki, Trivola, M., 1995, 232 pp.

[7] Burenin A. N., Rynki proizvodnykh finansovykh instrumentov, Infra-M, M., 1996, 368 pp.

[8] Carr P., Jarrow R., “The stop-loss start-gain paradox and option valuation: a new decomposition into intrinistic and time value”, Review of Financial Studies, 3:3 (1990), 469–492 | DOI

[9] Guberniev V. A., Kibzun A. I., “Posledovatelnoe khedzhirovanie optsionnoi pozitsii: analiz i modernizatsiya”, Avtomatika i telemekhanika, 1999, no. 1, 113–125 | MR | Zbl

[10] Bachelier L., “Theorie de la speculation”, Annales Scientifiques de lcole Normale Suprieure, 17 (1900), 21–86 | MR | Zbl

[11] Miller B. M., Pankov A. R., Teoriya sluchainykh protsessov v primerakh i zadachakh, Fizmatlit, M., 2002, 320 pp.

[12] Semakov S. L., Vybrosy sluchainykh protsessov: prilozheniya v aviatsii, Nauka, M., 2005, 199 pp.

[13] Borisov I. S., Nikitina N. N., “Raspredelenie chisla peresechenii polosy traektoriyami prosteishikh sluchainykh bluzhdanii i vinerovskogo protsessa so snosom”, Teoriya veroyatnostei i ee primeneniya, 56:1 (2011), 152–158 | DOI | MR | Zbl

[14] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp. | MR | Zbl