Stability of nondissipative systems under random perturbations that are small in the mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 170-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of stability under a permanent random perturbation is considered for a nondissipative system. Conditions for strong stability in probability are given in terms of the mathematical expectation of the (time) mean absolute value of the perturbation.
Keywords: nonlinear equations, equilibrium, stability.
Mots-clés : random perturbation
@article{TIMM_2013_19_2_a15,
     author = {L. A. Kalyakin},
     title = {Stability of nondissipative systems under random perturbations that are small in the mean},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {170--178},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Stability of nondissipative systems under random perturbations that are small in the mean
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 170
EP  - 178
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/
LA  - ru
ID  - TIMM_2013_19_2_a15
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Stability of nondissipative systems under random perturbations that are small in the mean
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 170-178
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/
%G ru
%F TIMM_2013_19_2_a15
L. A. Kalyakin. Stability of nondissipative systems under random perturbations that are small in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 170-178. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/

[1] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi mat. nauk, 63:5 (2008), 3–72 | DOI | MR | Zbl

[2] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 366 pp. | MR

[3] Khapaev M. M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vysshaya shk., M., 1988, 184 pp. | MR

[4] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[5] Yoshizawa T., “Liapunov's functions and boundedness of solutions”, Funkcialaj Ekvacioj., 2 (1958), 71–103 | MR

[6] Kats I. Ya., Metod funktsii Lyapunova v zadachakh ustoichivosti i stabilizatsii sistem sluchainoi struktury, Izd-vo UrGAPS, Ekaterinburg, 1998, 222 pp.

[7] Schuss Z., Theory and applications of stochastic processes. An analytical approach, Appl. Math. Sciences, 170, Springer, New York, 2010, 468 pp. | DOI | MR | Zbl

[8] Germaidze V. E., Krasovskii N. N., “Ob ustoichivosti pri postoyanno deistvuyuschikh vozmuscheniyakh”, Prikl. matematika i mekhanika, 21:6 (1957), 769–774 | MR

[9] Kalyakin L. A., “Ustoichivost nedissipativnykh sistem otnositelno postoyanno deistvuyuschikh sluchainykh vozmuschenii”, Mat. zametki, 92:1 (2012), 145–148 | DOI | Zbl

[10] Chetaev N. G., Ustoichivost dvizheniya, 2-e izd., Gostekhizdat, M., 1956, 176 pp. | MR