Stability of nondissipative systems under random perturbations that are small in the mean
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 170-178
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of stability under a permanent random perturbation is considered for a nondissipative system. Conditions for strong stability in probability are given in terms of the mathematical expectation of the (time) mean absolute value of the perturbation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear equations, equilibrium, stability.
Mots-clés : random perturbation
                    
                  
                
                
                Mots-clés : random perturbation
@article{TIMM_2013_19_2_a15,
     author = {L. A. Kalyakin},
     title = {Stability of nondissipative systems under random perturbations that are small in the mean},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {170--178},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/}
}
                      
                      
                    TY - JOUR AU - L. A. Kalyakin TI - Stability of nondissipative systems under random perturbations that are small in the mean JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 170 EP - 178 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/ LA - ru ID - TIMM_2013_19_2_a15 ER -
L. A. Kalyakin. Stability of nondissipative systems under random perturbations that are small in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 170-178. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/
