Stability of nondissipative systems under random perturbations that are small in the mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 170-178

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stability under a permanent random perturbation is considered for a nondissipative system. Conditions for strong stability in probability are given in terms of the mathematical expectation of the (time) mean absolute value of the perturbation.
Keywords: nonlinear equations, equilibrium, stability.
Mots-clés : random perturbation
@article{TIMM_2013_19_2_a15,
     author = {L. A. Kalyakin},
     title = {Stability of nondissipative systems under random perturbations that are small in the mean},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {170--178},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Stability of nondissipative systems under random perturbations that are small in the mean
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 170
EP  - 178
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/
LA  - ru
ID  - TIMM_2013_19_2_a15
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Stability of nondissipative systems under random perturbations that are small in the mean
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 170-178
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/
%G ru
%F TIMM_2013_19_2_a15
L. A. Kalyakin. Stability of nondissipative systems under random perturbations that are small in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 170-178. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a15/