Primal-dual Newton method for a linear problem of semidefinite programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 157-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear problem of semidefinite programming is considered, and the primal-dual Newton method is proposed for its solution. The superlinear local convergence of the method is established under the assumption that the primal and dual problems are nondegenerate and strictly complementary.
Keywords: semidefinite programming problem, Newton method, primal-dual method
Mots-clés : local convergence.
@article{TIMM_2013_19_2_a14,
     author = {V. G. Zhadan and A. A. Orlov},
     title = {Primal-dual {Newton} method for a~linear problem of semidefinite programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {157--169},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/}
}
TY  - JOUR
AU  - V. G. Zhadan
AU  - A. A. Orlov
TI  - Primal-dual Newton method for a linear problem of semidefinite programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 157
EP  - 169
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/
LA  - ru
ID  - TIMM_2013_19_2_a14
ER  - 
%0 Journal Article
%A V. G. Zhadan
%A A. A. Orlov
%T Primal-dual Newton method for a linear problem of semidefinite programming
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 157-169
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/
%G ru
%F TIMM_2013_19_2_a14
V. G. Zhadan; A. A. Orlov. Primal-dual Newton method for a linear problem of semidefinite programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 157-169. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/

[1] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.

[2] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[3] H. Wolkowicz, R. Saigal, L. Vandenberghe (eds.), Handbook of semidefinite programming, Kluwer Acad. Publ., Dordrecht, 2000, 656 pp. | MR

[4] de Klerk E., Aspects of semidefinite programming. Interior point algorithms and selected applications, Kluwer Acad. Publ., Dordrecht, 2004, 300 pp. | MR

[5] Alizadeh F., Haeberly J.-P. F., Overton M. L., “Primal-dual interior point methods for semidefinite programming. Convergence rates, stability and numerical results”, SIAM J. Optim., 8:3 (1998), 746–768 | DOI | MR | Zbl

[6] Nesterov Y. E., Todd M. J., “Primal-dual interior point methods for self-scaled cones”, SIAM J. Optim., 8:2 (1998), 324–364 | DOI | MR | Zbl

[7] Monteiro R. D. C., “Primal-dual path-following algorithms for semidefinite programming”, SIAM J. Optim., 7:3 (1997), 663–678 | DOI | MR | Zbl

[8] Muramatsu M., Vanderbei R. J., “Primal-dual affine scaling algorithms fails for semidefinite programming”, Math. Oper. Res., 24:1 (1999), 149–175 | DOI | MR | Zbl

[9] Evtushenko Yu. G., Zhadan V. G., Cherenkov A. P., “Primenenie metoda Nyutona k resheniyu zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 35:6 (1995), 850–866 | MR | Zbl

[10] Magnus J. R., Neudecker H., “The elimination matrix: some lemmas and applications”, SIAM J. Alg. Disc. Methods, 1:4 (1980), 422–449 | DOI | MR | Zbl

[11] Arnold V. I., “O matritsakh, zavisyaschikh ot parametrov”, Uspekhi mat. nauk, 26:2(158) (1971), 101–114 | MR | Zbl

[12] Alizadeh F., Haeberly J.-P. F., Overton M. L., “Complementarity and nondegeneracy in semidefinite programming”, Math. Programming Ser. B, 77:2 (1997), 111–128 | MR | Zbl

[13] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya sistem nelineinykh uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 560 pp.

[14] Zhadan V. G., Orlov A. A., “O skhodimosti dvoistvennogo metoda Nyutona dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Izv. Irkut. gos. un-ta. Matematika, 4:2 (2011), 75–90 | Zbl