Primal-dual Newton method for a~linear problem of semidefinite programming
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 157-169
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A linear problem of semidefinite programming is considered, and the primal-dual Newton method is proposed for its solution. The superlinear local convergence of the method is established under the assumption that the primal and dual problems are nondegenerate and strictly complementary.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
semidefinite programming problem, Newton method, primal-dual method
Mots-clés : local convergence.
                    
                  
                
                
                Mots-clés : local convergence.
@article{TIMM_2013_19_2_a14,
     author = {V. G. Zhadan and A. A. Orlov},
     title = {Primal-dual {Newton} method for a~linear problem of semidefinite programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {157--169},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/}
}
                      
                      
                    TY - JOUR AU - V. G. Zhadan AU - A. A. Orlov TI - Primal-dual Newton method for a~linear problem of semidefinite programming JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 157 EP - 169 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/ LA - ru ID - TIMM_2013_19_2_a14 ER -
V. G. Zhadan; A. A. Orlov. Primal-dual Newton method for a~linear problem of semidefinite programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 157-169. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a14/
