$2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 134-143
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem on a minimal clique (with respect to the total weight of its vertices and edges) of fixed size in a complete undirected weighted graph is considered along with some of its important special cases. Approximability questions are analyzed. The weak approximability of the problem is established for the general case. A $2$-approximate effective algorithm with time complexity $O(n^2)$ is proposed for cases where vertex weights are nonnegative and edge weights either satisfy the triangle inequality or are squared pairwise distances for some system of points of a Euclidean space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
complete undirected graph, clique of fixed size, minimum weight of vertices and edges, subset search, approximability, performance guarantee, time complexity.
Mots-clés : polynomial approximation algorithm
                    
                  
                
                
                Mots-clés : polynomial approximation algorithm
@article{TIMM_2013_19_2_a12,
     author = {I. I. Eremin and E. Kh. Gimadi and A. V. Kel'manov and A. V. Pyatkin and M. Yu. Khachai},
     title = {$2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {134--143},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/}
}
                      
                      
                    TY - JOUR AU - I. I. Eremin AU - E. Kh. Gimadi AU - A. V. Kel'manov AU - A. V. Pyatkin AU - M. Yu. Khachai TI - $2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 134 EP - 143 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/ LA - ru ID - TIMM_2013_19_2_a12 ER -
%0 Journal Article %A I. I. Eremin %A E. Kh. Gimadi %A A. V. Kel'manov %A A. V. Pyatkin %A M. Yu. Khachai %T $2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges %J Trudy Instituta matematiki i mehaniki %D 2013 %P 134-143 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/ %G ru %F TIMM_2013_19_2_a12
I. I. Eremin; E. Kh. Gimadi; A. V. Kel'manov; A. V. Pyatkin; M. Yu. Khachai. $2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 134-143. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/
