Mots-clés : polynomial approximation algorithm
@article{TIMM_2013_19_2_a12,
author = {I. I. Eremin and E. Kh. Gimadi and A. V. Kel'manov and A. V. Pyatkin and M. Yu. Khachai},
title = {$2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {134--143},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/}
}
TY - JOUR AU - I. I. Eremin AU - E. Kh. Gimadi AU - A. V. Kel'manov AU - A. V. Pyatkin AU - M. Yu. Khachai TI - $2$-approximate algorithm for finding a clique with minimum weight of vertices and edges JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 134 EP - 143 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/ LA - ru ID - TIMM_2013_19_2_a12 ER -
%0 Journal Article %A I. I. Eremin %A E. Kh. Gimadi %A A. V. Kel'manov %A A. V. Pyatkin %A M. Yu. Khachai %T $2$-approximate algorithm for finding a clique with minimum weight of vertices and edges %J Trudy Instituta matematiki i mehaniki %D 2013 %P 134-143 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/ %G ru %F TIMM_2013_19_2_a12
I. I. Eremin; E. Kh. Gimadi; A. V. Kel'manov; A. V. Pyatkin; M. Yu. Khachai. $2$-approximate algorithm for finding a clique with minimum weight of vertices and edges. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 134-143. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a12/
[1] Garey M. R., Johnson D., Computers and intractability: A guide to the theory of $NP$-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl
[2] Håstad J., “Clique is hard to approximate within $n^{1-\varepsilon}$”, Acta Math., 182:1 (1999), 105–142 | DOI | MR
[3] Park K., Lee K., Park S., “An extended formulation approach to the edge-weighted maximal clique problem”, European J. of Operational Research, 95:3 (1996), 671–682 | DOI | Zbl
[4] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979, 536 pp. | MR
[5] Kelmanov A. V., Pyatkin A. V., “$NP$-polnota nekotorykh zadach vybora podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 17:5 (2010), 37–45 | MR
[6] Kelmanov A. V., Romanchenko S. M., “Priblizhennyi algoritm dlya resheniya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 18:1 (2011), 61–69 | MR