Harmonic wavelets in a multiply connected domain with circular boundaries and their applications to problems of mathematical physics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 109-124
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Wavelet bases convenient for solving the Schwarz, Dirichlet, and Neumann problems in a domain with circular components of the boundary are constructed. Wavelet series converge uniformly in spaces of Hardy type. The construction of wavelets is based on a special system of harmonic rational functions to which either the Gram–Schmidt orthogonalization with respect to a special scalar product or its modification was applied.
Keywords: Schwarz problem, Dirichlet problem, Neumann problem, harmonic wavelets, basis in spaces of harmonic functions.
@article{TIMM_2013_19_2_a10,
     author = {G. A. Dubosarskii},
     title = {Harmonic wavelets in a~multiply connected domain with circular boundaries and their applications to problems of mathematical physics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {109--124},
     year = {2013},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a10/}
}
TY  - JOUR
AU  - G. A. Dubosarskii
TI  - Harmonic wavelets in a multiply connected domain with circular boundaries and their applications to problems of mathematical physics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 109
EP  - 124
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a10/
LA  - ru
ID  - TIMM_2013_19_2_a10
ER  - 
%0 Journal Article
%A G. A. Dubosarskii
%T Harmonic wavelets in a multiply connected domain with circular boundaries and their applications to problems of mathematical physics
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 109-124
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a10/
%G ru
%F TIMM_2013_19_2_a10
G. A. Dubosarskii. Harmonic wavelets in a multiply connected domain with circular boundaries and their applications to problems of mathematical physics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 109-124. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a10/

[1] Subbotin Yu. N., Chernykh N. I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. let. mat. shkoly S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 129–149

[2] Dubosarskii G. A., “Garmonicheskie vspleski v mnogosvyaznoi oblasti s krugovym granitsami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 99–114

[3] Goluzin G. M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravneniya Laplace'a i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–276 | Zbl

[4] Subbotin Yu. N., Chernykh N. I., “Vspleski v prostranstvakh garmonicheskikh funktsii”, Izv. RAN. Ser. matematicheskaya, 64:1 (2000), 145–174 | DOI | MR | Zbl