Linear programming and dynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 7-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear boundary value problem of optimal control is considered in a Hilbert space. The problem is based on linear dynamics and a terminal problem of linear programming at the right end of the time interval. A saddle method is proposed for its solution, and its convergence is proved.
Keywords: linear programming, optimal control, boundary value problems, solution methods, stability.
Mots-clés : convergence
@article{TIMM_2013_19_2_a1,
     author = {A. S. Antipin and E. V. Khoroshilova},
     title = {Linear programming and dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--25},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - E. V. Khoroshilova
TI  - Linear programming and dynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 7
EP  - 25
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/
LA  - ru
ID  - TIMM_2013_19_2_a1
ER  - 
%0 Journal Article
%A A. S. Antipin
%A E. V. Khoroshilova
%T Linear programming and dynamics
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 7-25
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/
%G ru
%F TIMM_2013_19_2_a1
A. S. Antipin; E. V. Khoroshilova. Linear programming and dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 7-25. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/