Mots-clés : convergence
@article{TIMM_2013_19_2_a1,
author = {A. S. Antipin and E. V. Khoroshilova},
title = {Linear programming and dynamics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {7--25},
year = {2013},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/}
}
A. S. Antipin; E. V. Khoroshilova. Linear programming and dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 7-25. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/
[1] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR
[2] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl
[3] Eremin I. I., “Dvoistvennost dlya Pareto-posledovatelnykh zadach lineinogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, 1995, 245–260 | MR | Zbl
[4] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.
[5] Eremin I. I., Mazurov Vl. D., Voprosy optimizatsii i raspoznavaniya obrazov, Sred.-Ural. kn. izd-vo, Sverdlovsk, 1979, 64 pp.
[6] Eremin I. I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo YuUrGU, Chelyabinsk, 2005, 195 pp. | MR
[7] Vasilev F. P., Metody optimizatsii, v 2 kn., Kn. 1, 2, MTsNMO, M., 2011, 620 pp.
[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gos. izd-vo tekhn.-teoret. lit., M., 1957, 552 pp. | MR
[9] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl
[10] Vasilev F. P., Khoroshilova E. V., “Ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2010, no. 3, 18–23
[11] Vasilev F. P., Khoroshilova E. V., Antipin A. S., “Regulyarizovannyi ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 27–37
[12] Khoroshilova E. V., “Ekstragradientnyi metod v zadache optimalnogo upravleniya s terminalnymi ogranicheniyami”, Avtomatika i telemekhanika, 2012, no. 3, 117–133
[13] Khoroshilova E. V., “Extragradient-type method for optimal control problem with linear constraints and convex objective function”, Optim. Lett., 2012, 22 pp., [Publised online 23 May 2012] | DOI
[14] Antipin A. S., “Metod modifitsirovannoi funktsii Lagranzha dlya zadach optimalnogo upravleniya so svobodnym pravym kontsom”, Izv. Irkut. gos. un-ta, 4:2 (2011), 27–44 | MR | Zbl
[15] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i mat. metody, 12:6 (1976), 747–756 | Zbl
[16] Antipin A. S., “Ob odnom metode otyskaniya sedlovoi tochki modifitsirovannoi funktsii Lagranzha”, Ekonomika i mat. metody, 13:3 (1977), 560–565 | MR | Zbl
[17] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, v. 1, Springer-Verlag, New York, 2003, 728 pp.
[18] Konnov I. V., Equilibrium models and variational inequalities, Ser. Mathematics in Science and Engineering, 210, Amsterdam, 2007, 248 pp. | MR | Zbl
[19] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl