Linear programming and dynamics
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 7-25
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A linear boundary value problem of optimal control is considered in a Hilbert space. The problem is based on linear dynamics and a terminal problem of linear programming at the right end of the time interval. A saddle method is proposed for its solution, and its convergence is proved.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear programming, optimal control, boundary value problems, solution methods, stability.
Mots-clés : convergence
                    
                  
                
                
                Mots-clés : convergence
@article{TIMM_2013_19_2_a1,
     author = {A. S. Antipin and E. V. Khoroshilova},
     title = {Linear programming and dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--25},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/}
}
                      
                      
                    A. S. Antipin; E. V. Khoroshilova. Linear programming and dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 7-25. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a1/
