Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 87-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of optimal stabilization is studied for linear periodic finite-dimensional systems with aftereffect. The class of admissible controls is limited to piecewise constant feedback controls formed at discrete times. It is shown that the problem under investigation is equivalent to a stabilization problem for a linear system of difference equations.
Keywords: optimal stabilization, linear periodic finite-dimensional system of differential equations, aftereffect, feedback control.
@article{TIMM_2013_19_1_a8,
     author = {Yu. F. Dolgii and E. V. Koshkin},
     title = {Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {87--98},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - E. V. Koshkin
TI  - Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 87
EP  - 98
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/
LA  - ru
ID  - TIMM_2013_19_1_a8
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A E. V. Koshkin
%T Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 87-98
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/
%G ru
%F TIMM_2013_19_1_a8
Yu. F. Dolgii; E. V. Koshkin. Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/

[1] Krasovskii N. N., “Ob analiticheskom konstruirovanii regulyatora v sisteme s zapazdyvaniem vremeni”, Prikl. matematika i mekhanika, 26:3 (1962), 39–51 | MR

[2] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s posledeistviem”, Differents. uravneniya, 1:1 (1965), 102–116 | Zbl

[3] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR | Zbl

[4] Markushin E. M., Shimanov S. N., “Priblizhennoe reshenie zadachi analiticheskogo regulyatora dlya sistem s zapazdyvaniem”, Differents. uravneniya, 2:8 (1966), 1018–1026 | Zbl

[5] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724 | MR

[6] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami i zapazdyvaniem vremeni”, Prikl. matematika i mekhanika, 27:3 (1963), 450–458 | MR | Zbl

[7] Krasovskii N. N., Osipov Yu. S., “O stabilizatsii dvizhenii upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1963, no. 6, 3–15 | MR | Zbl

[8] Shabalin M. N., Shimanov S. N., “Zadacha Letova dlya upravleniya s zapazdyvaniem vremeni i periodicheskimi koeffitsientami”, Ustoichivost i nelineinye kolebaniya, Sb. nauch. tr., Izd-vo Ural. gos. un-ta, Sverdlovsk, 1984, 89–106

[9] Dolgii Yu. F., Koshkin E. V., “Optimalnaya stabilizatsiya dinamicheskikh protsessov v periodicheskikh lineinykh sistemakh differentsialnykh uravnenii s kusochno-postoyannymi argumentami”, Problemy dinamicheskogo upravleniya, Sb. nauch. tr. f-ta VMK MGU im. M. V. Lomonosova, Vyp. 5, 2010, 102–112

[10] Danford N., Shvarts D., Lineinye operatory. Obschaya teoriya, Mir, M., 1962, 895 pp.

[11] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh prilozhenii k nekotorym zadacham matematicheskoi fiziki”, Byul. MGU. Sek. A, 1:8 (1938), 1–25 | MR | Zbl

[12] Cooke K. L., “Stability of non-autonomous delay differential equations by Liapunov functionals”, Lec. Notes in Math., 1076, 1984, 41–52 | DOI | MR | Zbl

[13] Cooke K. L., Ferreira J. M., “Stability conditions for linear retarded functional differential equations”, J. Math. Anal. Appl., 96:2 (1983), 480–504 | DOI | MR | Zbl

[14] Cooke K. L., Wiener J., “Retarded differential equations with piecewise constant delays”, J. Math. Anal. Appl., 99 (1984), 265–297 | DOI | MR | Zbl

[15] Alonso A., Hong. J., Rojo J., “A class of ergodic solution of differential equations with piecewise constant arguments”, Dyn. Syst. Appl., 7:4 (1998), 561–574 | MR

[16] Yuan Rong, “On almost periodic solution of differential equations with piecewise constant arguments”, Math. Cambridge Phil. Soc., 141:1 (2006), 161–174 | DOI | MR | Zbl

[17] George S., “Periodic solutions of differential equations with piecewise constant delays”, Commun. Appl. Anal., 7:2–3 (2003), 443–453 | MR | Zbl

[18] Cooke K. L., Turi J., Turner G., Stabilization of hybrid systems in the presence of feedback delays, Preprint series No 906, USA Institute for mathematics and its applications, 1991, 15 pp.

[19] Yoshiaki M., “A sufficient condition on global stability in a logistic equations with piecewise constant arguments”, Hokkaido Math. J., 32:1 (2003), 75–83 | MR | Zbl

[20] Golpalsamy K., Stability and oscillations in delay differential equations of population dynamics, Kluwer academic publishers, Dortrecht, 1992, 520 pp. | MR

[21] Liu P., Golpalsamy K., “Global stability and chaos in a population model with piecewise constant arguments”, Appl. Math. and Comput., 101:1 (1999), 63–88 | DOI | MR | Zbl

[22] Simonov P. M., “O nekotorykh dinamicheskikh modelyakh makroekonomiki”, Ekonomicheskaya kibernetika: matematicheskie i instrumentalnye metody analiza, prognozirovaniya i upravleniya, Izd-vo Permskogo un-ta, Perm, 2002, 213–231

[23] Simonov P. M., “O nekotorykh dinamicheskikh modelyakh mikroekonomiki”, Vest. PGTU. Matematika i prikladnaya matematika, 2002, no. 3, 109–114

[24] Tarasyan V. S., “Periodicheskie sistemy differentsialnykh uravnenii s konechnomernymi operatorami”, Differents. uravneniya i protsessy upravleniya, 2002, no. 4, 67–91 | MR

[25] Dolgii Yu. F., Tarasyan V. S., “Konechnomernye operatory monodromii dlya periodicheskikh sistem differentsialnykh uravnenii s posledeistviem”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 2000, no. 3(18), 67–83 | MR

[26] Dolgii Yu. F., Tarasyan V. S., “Usloviya konechnomernosti operatora monodromii dlya periodicheskikh sistem s posledeistviem”, Izv. vuzov. Matematika, 2003, no. 3, 27–39 | MR | Zbl

[27] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, M., 1977, 650 pp.

[28] Furasov V. D., Ustoichivost i stabilizatsiya diskretnykh protsessov, Nauka, M., 1982, 192 pp. | MR | Zbl