Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 87-98

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal stabilization is studied for linear periodic finite-dimensional systems with aftereffect. The class of admissible controls is limited to piecewise constant feedback controls formed at discrete times. It is shown that the problem under investigation is equivalent to a stabilization problem for a linear system of difference equations.
Keywords: optimal stabilization, linear periodic finite-dimensional system of differential equations, aftereffect, feedback control.
@article{TIMM_2013_19_1_a8,
     author = {Yu. F. Dolgii and E. V. Koshkin},
     title = {Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - E. V. Koshkin
TI  - Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 87
EP  - 98
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/
LA  - ru
ID  - TIMM_2013_19_1_a8
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A E. V. Koshkin
%T Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 87-98
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/
%G ru
%F TIMM_2013_19_1_a8
Yu. F. Dolgii; E. V. Koshkin. Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a8/