@article{TIMM_2013_19_1_a7,
author = {M. I. Gusev},
title = {On the penalty function method in the problem of constructing reachable sets for control systems with state constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {81--86},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/}
}
TY - JOUR AU - M. I. Gusev TI - On the penalty function method in the problem of constructing reachable sets for control systems with state constraints JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 81 EP - 86 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/ LA - ru ID - TIMM_2013_19_1_a7 ER -
%0 Journal Article %A M. I. Gusev %T On the penalty function method in the problem of constructing reachable sets for control systems with state constraints %J Trudy Instituta matematiki i mehaniki %D 2013 %P 81-86 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/ %G ru %F TIMM_2013_19_1_a7
M. I. Gusev. On the penalty function method in the problem of constructing reachable sets for control systems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 81-86. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/
[1] Kurzhanskii A. B., Filippova T. F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR
[2] Kurzhanskii A. B., Filippova T. F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR
[3] Chernousko F. L., State estimation for dynamic systems, CRC Press, Boca Raton, 1994, 268 pp.
[4] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl
[5] Lotov A. V, “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl
[6] Lempio F., Veliov V. M., “Discrete approximations to differential inclusions”, GAMM Mitt., 21:2 (1998), 101–135 | MR
[7] Guseinov Kh. I., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 62:2 (1998), 179–186 | MR
[8] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | MR | Zbl
[9] Kurzhanski A. B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl
[10] Mitchell I. M., Tomlin C. J., “Overapproximating reachable sets by Hamilton–Jacobi Projections”, J. Sci. Comput., 19:1–3 (2003), 323–346 | DOI | MR | Zbl
[11] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl
[12] Gusev M. I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94
[13] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51
[14] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR
[15] Forcellini F., Rampazzo F., “On non-convex differential inclusions whose state is constrained in the closure of an open set”, J. Differ. Integr. Equations, 12:4 (1999), 471–497 | MR | Zbl
[16] Bettiol P., Bressan A., Vinter R., “Trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples”, SIAM J. Control Optim., 48:7 (2010), 4664–4679 | DOI | MR | Zbl