On the penalty function method in the problem of constructing reachable sets for control systems with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 81-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problem of constructing reachable sets for a nonlinear control system with state constraints given in the form of inequalities. An analog of the penalty function method is proposed; it consists in replacing the original system with state constraints by an auxiliary system without state constraints. The right-hand side of the auxiliary system is a modification of the right-hand side of the original system and depends on a scalar parameter (a penalty coefficient). Under certain conditions, we show that a reachable set of the original system can be approximated from within in the Hausdorff metric by reachable sets of auxiliary systems as the penalty coefficient tends to infinity.
Keywords: control system, reachable set, state constraints, penalty function method.
@article{TIMM_2013_19_1_a7,
     author = {M. I. Gusev},
     title = {On the penalty function method in the problem of constructing reachable sets for control systems with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {81--86},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - On the penalty function method in the problem of constructing reachable sets for control systems with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 81
EP  - 86
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/
LA  - ru
ID  - TIMM_2013_19_1_a7
ER  - 
%0 Journal Article
%A M. I. Gusev
%T On the penalty function method in the problem of constructing reachable sets for control systems with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 81-86
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/
%G ru
%F TIMM_2013_19_1_a7
M. I. Gusev. On the penalty function method in the problem of constructing reachable sets for control systems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 81-86. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a7/

[1] Kurzhanskii A. B., Filippova T. F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR

[2] Kurzhanskii A. B., Filippova T. F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR

[3] Chernousko F. L., State estimation for dynamic systems, CRC Press, Boca Raton, 1994, 268 pp.

[4] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[5] Lotov A. V, “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl

[6] Lempio F., Veliov V. M., “Discrete approximations to differential inclusions”, GAMM Mitt., 21:2 (1998), 101–135 | MR

[7] Guseinov Kh. I., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 62:2 (1998), 179–186 | MR

[8] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | MR | Zbl

[9] Kurzhanski A. B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl

[10] Mitchell I. M., Tomlin C. J., “Overapproximating reachable sets by Hamilton–Jacobi Projections”, J. Sci. Comput., 19:1–3 (2003), 323–346 | DOI | MR | Zbl

[11] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl

[12] Gusev M. I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94

[13] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51

[14] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR

[15] Forcellini F., Rampazzo F., “On non-convex differential inclusions whose state is constrained in the closure of an open set”, J. Differ. Integr. Equations, 12:4 (1999), 471–497 | MR | Zbl

[16] Bettiol P., Bressan A., Vinter R., “Trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples”, SIAM J. Control Optim., 48:7 (2010), 4664–4679 | DOI | MR | Zbl