On problems of partial stability for delay systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of stability with respect to a part of variables of both zero equilibrium state and “partial” equilibrium state is considered for nonlinear nonstationary delay systems of differential equations. As compared to known assumptions, more general assumptions are made for the values of the supremum norm of components of the initial vector function that correspond to the “uncontrolled” variables. Within the method of Lyapunov–Krasovskii functionals, new conditions for stability and asymptotic stability of this type are obtained, which generalize a number of existing results.
Keywords: delay systems of functional differential equations, partial stability, method of Lyapunov–Krasovskii functionals.
@article{TIMM_2013_19_1_a4,
     author = {V. I. Vorotnikov and Yu. G. Martyshenko},
     title = {On problems of partial stability for delay systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {49--58},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a4/}
}
TY  - JOUR
AU  - V. I. Vorotnikov
AU  - Yu. G. Martyshenko
TI  - On problems of partial stability for delay systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 49
EP  - 58
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a4/
LA  - ru
ID  - TIMM_2013_19_1_a4
ER  - 
%0 Journal Article
%A V. I. Vorotnikov
%A Yu. G. Martyshenko
%T On problems of partial stability for delay systems
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 49-58
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a4/
%G ru
%F TIMM_2013_19_1_a4
V. I. Vorotnikov; Yu. G. Martyshenko. On problems of partial stability for delay systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a4/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatlit, M., 1959, 211 pp. | MR

[2] Shimanov S. N., “O neustoichivosti dvizheniya sistem s zapazdyvaniem po vremeni”, Prikl. matematika i mekhanika, 24:1 (1960), 55–63 | Zbl

[3] Hale J. K., Theory of functional differential equations, 2 ed., Springer-Verlag, New York, 1977, 365 pp. | MR | Zbl

[4] Razumikhin B. S., “Ob ustoichivosti sistem s zapazdyvaniem”, Prikl. matematika i mekhanika, 20:4 (1956), 500–512

[5] Karafyllis I., Pepe P., Jiang Z. P., “Global output stability for systems described by retarded functional differential equations”, European J. Control, 14:6 (2008), 516–536 | DOI | MR

[6] Andreev A. S., “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomatika i telemekhanika, 2009, no. 9, 4–55 | MR | Zbl

[7] Aleksandrov A. Yu., Zhabko A. P., “Ob asimptoticheskoi ustoichivosti reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvaniem”, Izv. vuzov. Matematika, 2012, no. 5, 3–12 | MR | Zbl

[8] Rumyantsev V. V., “Ob ustoichivosti dvizheniya po otnosheniyu k chasti peremennykh”, Vestn. MGU. Ser. matematiki, mekhaniki, fiziki, astronomii, khimii, 1957, no. 4, 9–16

[9] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987, 256 pp. | MR | Zbl

[10] Savchenko A. Ya., Ignatev A. O., Nekotorye zadachi ustoichivosti neavtonomnykh sistem, Nauk. dumka, Kiev, 1989, 208 pp. | MR | Zbl

[11] Vorotnikov V. I., Partial stability and control, Birkhauser, Boston, 1998, 448 pp. | MR | Zbl

[12] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya, Nauchnyi mir, M., 2001, 320 pp. | MR | Zbl

[13] Halanay A., Differential equation: Stability, oscillations, time-lags, Acad. Press, New York, 1966, 528 pp. | MR | Zbl

[14] Corduneanu C., “On partial stability for delay systems”, Ann. Polon. Math., 29 (1974), 357–362 | MR

[15] Vorotnikov V. I., “Chastichnaya ustoichivost i upravlenie: sostoyanie problemy i perspektivy razvitiya”, Avtomatika i telemekhanika, 2005, no. 4, 3–59 | MR | Zbl

[16] Vorotnikov V. I., Martyshenko Yu. G., “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | MR

[17] Miroshnik I. V., Nikiforov V. O., Fradkov A. L., Nelineinoe i adaptivnoe upravlenie slozhnymi nelineinymi sistemami, Nauka, SPb., 2000, 549 pp. | Zbl

[18] Lin Y., Sontag E. D., Wang Y., “A smooth converse Lyapunov theorem for robust stability”, SIAM J. Control Optim., 34:1 (1996), 124–160 | DOI | MR | Zbl

[19] Efimov D. V., Robastnoe i adaptivnoe upravlenie nelineinymi kolebaniyami, Nauka, SPb., 2005, 314 pp.

[20] Kellett C. M., Teel A. R., “Weak converse Lyapunov theorems and control-Lyapunov functions”, SIAM J. Control Optim., 42:6 (2004), 1934–1959 | DOI | MR | Zbl

[21] Burton T. A., Stability and periodic solutions of ordinary and functional differential equations, Acad. Press, Orlando, 1985, 342 pp. | MR | Zbl

[22] Burton T. A., “Uniform asymptotic stability in functional differential equations”, Proc. Amer. Math. Soc., 68:3 (1978), 195–199 | DOI | MR | Zbl

[23] Mazenc F., Praly L., Dayawansa W. P., “Global stabilization by output feedback: examples and counterexamples”, Systems Control Letters, 23:2 (1994), 119–125 | DOI | MR | Zbl

[24] Angeli D., Sontag E. D., “Forward completeness, unboundedness observability, and their Lyapunov characterization”, Systems Control Letters, 38:4–5 (2000), 209–217 | MR

[25] Dashkovskiy S. N., Efimov D. V., Sontag E. D., “Input to state stability and allied systems properties”, Autom. Remote Control, 72:8 (2011), 1579–1614 | DOI | MR | Zbl

[26] Vorotnikov V. I., “K teorii ustoichivosti po chasti peremennykh”, Prikl. matematika i mekhanika, 55:4 (1995), 553–561 | MR

[27] Bernfeld S. R., Corduneanu C., Ignatyev A. O., “On the stability of invariant sets of functional differential equations”, Nonlinear Analysis: TMA, 55:4–6 (2003), 641–656 | DOI | MR | Zbl

[28] Corduneanu C., Ignatyev A. O., “Stability of invariant sets of functional differential equations with delay”, Nonlinear Funct. Anal. Appl., 10:1 (2005), 11–24 | MR | Zbl