Capture of two cooperative evaders in linear recurrent differential games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 41-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear nonstationary problem of a conflict interaction of a group of pursuers with two evaders with equal dynamic and inertial capabilities of all the participants is considered under the assumptions that the fundamental matrix of the homogeneous system is a recurrent function and the evaders use the same control. Sufficient conditions for the capture of the evaders are obtained. Illustrative examples are given.
Keywords: differential game, group pursuit, recurrent function.
@article{TIMM_2013_19_1_a3,
     author = {M. N. Vinogradova and N. N. Petrov and N. A. Solov'eva},
     title = {Capture of two cooperative evaders in linear recurrent differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/}
}
TY  - JOUR
AU  - M. N. Vinogradova
AU  - N. N. Petrov
AU  - N. A. Solov'eva
TI  - Capture of two cooperative evaders in linear recurrent differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 41
EP  - 48
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/
LA  - ru
ID  - TIMM_2013_19_1_a3
ER  - 
%0 Journal Article
%A M. N. Vinogradova
%A N. N. Petrov
%A N. A. Solov'eva
%T Capture of two cooperative evaders in linear recurrent differential games
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 41-48
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/
%G ru
%F TIMM_2013_19_1_a3
M. N. Vinogradova; N. N. Petrov; N. A. Solov'eva. Capture of two cooperative evaders in linear recurrent differential games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/