Capture of two cooperative evaders in linear recurrent differential games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 41-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear nonstationary problem of a conflict interaction of a group of pursuers with two evaders with equal dynamic and inertial capabilities of all the participants is considered under the assumptions that the fundamental matrix of the homogeneous system is a recurrent function and the evaders use the same control. Sufficient conditions for the capture of the evaders are obtained. Illustrative examples are given.
Keywords: differential game, group pursuit, recurrent function.
@article{TIMM_2013_19_1_a3,
     author = {M. N. Vinogradova and N. N. Petrov and N. A. Solov'eva},
     title = {Capture of two cooperative evaders in linear recurrent differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {41--48},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/}
}
TY  - JOUR
AU  - M. N. Vinogradova
AU  - N. N. Petrov
AU  - N. A. Solov'eva
TI  - Capture of two cooperative evaders in linear recurrent differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 41
EP  - 48
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/
LA  - ru
ID  - TIMM_2013_19_1_a3
ER  - 
%0 Journal Article
%A M. N. Vinogradova
%A N. N. Petrov
%A N. A. Solov'eva
%T Capture of two cooperative evaders in linear recurrent differential games
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 41-48
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/
%G ru
%F TIMM_2013_19_1_a3
M. N. Vinogradova; N. N. Petrov; N. A. Solov'eva. Capture of two cooperative evaders in linear recurrent differential games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a3/

[1] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 287 pp. | MR | Zbl

[4] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[5] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[6] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp. | MR | Zbl

[7] Petrov N. N., Petrov N. Nikandr., “O differentsialnoi igre ‘kazaki-razboiniki’ ”, Differentsialnye uravneniya, 19:8 (1983), 1246–1254

[8] Satimov N., Mamatov M. Sh., “O zadache presledovaniya i ukloneniya ot vstrechi v differentsialnykh igrakh mezhdu gruppami presledovatelei i ubegayuschikh”, Dokl. AN Uz.SSR, 1983, no. 4, 3–6 | MR | Zbl

[9] Vagin D. A., Petrov N. N., “Zadacha presledovaniya gruppy zhestko skoordinirovannykh ubegayuschikh”, Izv. RAN. Teoriya i sistemy upravleniya, 2001, no. 5, 75–79 | MR | Zbl

[10] Grigorenko N. L., “Presledovanie neskolkimi upravlyaemymi ob'ektami dvukh ubegayuschikh”, Dokl. AN SSSR, 282:5 (1985), 1051–1954 | MR

[11] Vinogradova M. N., “O poimke dvukh ubegayuschikh v nestatsionarnoi zadache prostogo presledovaniya”, Mat. teoriya igr i ee prilozheniya, 4:1 (2012), 21–31

[12] Bannikov A. S., Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 40–51

[13] Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Mat. teoriya igr i ee prilozheniya, 2:4 (2010), 74–83 | Zbl

[14] Vagin D. A., Petrov N. N., “Ob odnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 66:2 (2002), 234–241 | MR

[15] Soloveva N. A., “Odna zadacha gruppovogo presledovaniya v lineinykh rekurrentnykh differentsialnykh igrakh”, Mat. teoriya igr i ee prilozheniya, 3:1 (2011), 81–90

[16] Zubov V. I., Teoriya kolebanii, Vyssh. shk., M., 1979, 200 pp.

[17] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl