Voir la notice du chapitre de livre
@article{TIMM_2013_19_1_a29,
author = {A. V. Chernov},
title = {On $\varepsilon$-equilibrium in noncooperative functional operator $n$-person games},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {316--328},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a29/}
}
A. V. Chernov. On $\varepsilon$-equilibrium in noncooperative functional operator $n$-person games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 316-328. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a29/
[1] Kleimenov A. F., “Universalnoe reshenie v neantagonisticheskoi pozitsionnoi differentsialnoi igre s vektornymi kriteriyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 1, 1992, 97–105 | MR | Zbl
[2] Lions J.-L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl
[3] Chernousko F. L., “Granichnye upravleniya v sistemakh s raspredelennymi parametrami”, Prikl. matematika i mekhanika, 56:5 (1992), 810–826 | MR
[4] Vasilev F. P., “O dvoistvennosti v lineinykh zadachakh upravleniya i nablyudeniya”, Differents. uravneniya, 31:11 (1995), 1893–1900
[5] Il'in V. A., Tikhomirov V. V., “The wave equation with a boundary control at both endpoints and the complete vibration damping problem”, Differ. Equations, 35:5 (1999), 697–708 | MR
[6] Sokolov S. V., “O reshenii zadachi differentsialnoi igry dlya raspredelennykh dinamicheskikh sistem”, Problemy upravleniya i informatiki, 157:1 (2004), 71–77
[7] Satimov N. Yu., Tukhtasinov M., “O nekotorykh igrovykh zadachakh v upravlyaemykh evolyutsionnykh uravneniyakh pervogo poryadka”, Differents. uravneniya, 41:8 (2005), 1114–1121 | MR | Zbl
[8] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Mat. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl
[9] Chernov A. V., “O potochechnoi otsenke raznosti reshenii upravlyaemogo funktsionalno-operatornogo uravneniya v lebegovykh prostranstvakh”, Mat. zametki, 88:2 (2010), 288–302 | DOI | MR | Zbl
[10] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl
[11] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | Zbl
[12] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychisl. matematiki i mat. fiziki, 52:8 (2012), 1400–1414
[13] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1616–1629 | MR
[14] Chernov A. V., “O totalnom sokhranenii globalnoi razreshimosti funktsionalno-operatornykh uravnenii”, Vest. Nizhegorod. un-ta im. N. I. Lobachevskogo, 2009, no. 3, 130–137
[15] Chernov A. V., “O volterrovom obobschenii metoda monotonizatsii dlya nelineinykh funktsionalno-operatornykh uravnenii”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 2, 84–99
[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl
[17] Fedorov V. M., Kurs funktsionalnogo analiza, Lan, Spb., 2005, 352 pp.
[18] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl
[19] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 30:1 (1990), 3–21 | MR | Zbl
[20] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, M., 1998, 304 pp. | MR | Zbl
[21] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956, 392 pp. | MR
[22] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR | Zbl
[23] Vasin A. A., Morozov V. V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, Izd-vo MGU, M., 2003, 278 pp.
[24] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, GITTL, M., 1953, 280 pp.