On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The optimality of M. M. Lavrent'ev's method for equations with approximately given operator is investigated. An exact estimate is obtained for the error of this method.
Keywords: operator equation, optimal method, error estimate.
@article{TIMM_2013_19_1_a25,
     author = {V. P. Tanana and A. B. Bredikhina},
     title = {On the optimality of a~generalization of {M.} {M.~Lavrent'ev's} method in the solution of equations with an error in the operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--263},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. B. Bredikhina
TI  - On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 258
EP  - 263
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/
LA  - ru
ID  - TIMM_2013_19_1_a25
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. B. Bredikhina
%T On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 258-263
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/
%G ru
%F TIMM_2013_19_1_a25
V. P. Tanana; A. B. Bredikhina. On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/

[1] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrentev method”, J. Inverse Ill-Posed Probl., 18:8 (2010), 935–944 | MR

[2] Lavrentev M. M., “Ob integralnykh uravneniyakh pervogo roda”, Dokl. AN SSSR, 127:1 (1959), 31–33 | MR

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[4] Bredikhina A. B., “Ob optimalnosti metoda M. M. Lavrenteva pri reshenii uravnenii s oshibkoi v operatore”, Vestn. YuUrGU, 2011, no. 5, No 32(249) (Matematika. Fizika. Mekhanika), 18–22