On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimality of M. M. Lavrent'ev's method for equations with approximately given operator is investigated. An exact estimate is obtained for the error of this method.
Keywords:
operator equation, optimal method, error estimate.
@article{TIMM_2013_19_1_a25,
author = {V. P. Tanana and A. B. Bredikhina},
title = {On the optimality of a~generalization of {M.} {M.~Lavrent'ev's} method in the solution of equations with an error in the operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--263},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/}
}
TY - JOUR AU - V. P. Tanana AU - A. B. Bredikhina TI - On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 258 EP - 263 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/ LA - ru ID - TIMM_2013_19_1_a25 ER -
%0 Journal Article %A V. P. Tanana %A A. B. Bredikhina %T On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator %J Trudy Instituta matematiki i mehaniki %D 2013 %P 258-263 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/ %G ru %F TIMM_2013_19_1_a25
V. P. Tanana; A. B. Bredikhina. On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/
[1] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrentev method”, J. Inverse Ill-Posed Probl., 18:8 (2010), 935–944 | MR
[2] Lavrentev M. M., “Ob integralnykh uravneniyakh pervogo roda”, Dokl. AN SSSR, 127:1 (1959), 31–33 | MR
[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR
[4] Bredikhina A. B., “Ob optimalnosti metoda M. M. Lavrenteva pri reshenii uravnenii s oshibkoi v operatore”, Vestn. YuUrGU, 2011, no. 5, No 32(249) (Matematika. Fizika. Mekhanika), 18–22