On the optimality of a~generalization of M.\,M.~Lavrent'ev's method in the solution of equations with an error in the operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimality of M. M. Lavrent'ev's method for equations with approximately given operator is investigated. An exact estimate is obtained for the error of this method.
Keywords: operator equation, optimal method, error estimate.
@article{TIMM_2013_19_1_a25,
     author = {V. P. Tanana and A. B. Bredikhina},
     title = {On the optimality of a~generalization of {M.\,M.~Lavrent'ev's} method in the solution of equations with an error in the operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--263},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. B. Bredikhina
TI  - On the optimality of a~generalization of M.\,M.~Lavrent'ev's method in the solution of equations with an error in the operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 258
EP  - 263
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/
LA  - ru
ID  - TIMM_2013_19_1_a25
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. B. Bredikhina
%T On the optimality of a~generalization of M.\,M.~Lavrent'ev's method in the solution of equations with an error in the operator
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 258-263
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/
%G ru
%F TIMM_2013_19_1_a25
V. P. Tanana; A. B. Bredikhina. On the optimality of a~generalization of M.\,M.~Lavrent'ev's method in the solution of equations with an error in the operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/