On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263
Voir la notice du chapitre de livre
The optimality of M. M. Lavrent'ev's method for equations with approximately given operator is investigated. An exact estimate is obtained for the error of this method.
Keywords:
operator equation, optimal method, error estimate.
@article{TIMM_2013_19_1_a25,
author = {V. P. Tanana and A. B. Bredikhina},
title = {On the optimality of a~generalization of {M.} {M.~Lavrent'ev's} method in the solution of equations with an error in the operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--263},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/}
}
TY - JOUR AU - V. P. Tanana AU - A. B. Bredikhina TI - On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 258 EP - 263 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/ LA - ru ID - TIMM_2013_19_1_a25 ER -
%0 Journal Article %A V. P. Tanana %A A. B. Bredikhina %T On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator %J Trudy Instituta matematiki i mehaniki %D 2013 %P 258-263 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/ %G ru %F TIMM_2013_19_1_a25
V. P. Tanana; A. B. Bredikhina. On the optimality of a generalization of M. M. Lavrent'ev's method in the solution of equations with an error in the operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 258-263. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a25/
[1] Tanana V. P., Rudakova T. N., “The optimum of the M. M. Lavrentev method”, J. Inverse Ill-Posed Probl., 18:8 (2010), 935–944 | MR
[2] Lavrentev M. M., “Ob integralnykh uravneniyakh pervogo roda”, Dokl. AN SSSR, 127:1 (1959), 31–33 | MR
[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR
[4] Bredikhina A. B., “Ob optimalnosti metoda M. M. Lavrenteva pri reshenii uravnenii s oshibkoi v operatore”, Vestn. YuUrGU, 2011, no. 5, No 32(249) (Matematika. Fizika. Mekhanika), 18–22