On an estimate for the modulus of continuity of a~nonlinear inverse problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 253-257

Voir la notice de l'article provenant de la source Math-Net.Ru

A reverse time problem is considered for a semilinear parabolic equation. Two-sided estimates are obtained for the norms of values of a nonlinear operator in terms of the norms of values of the corresponding linear operator. As a consequence, two-sided estimates are established for the modulus of continuity of a semilinear inverse problem in terms of the modulus of continuity of the corresponding linear problem.
Mots-clés : parabolic equation
Keywords: inverse problem, modulus of continuity of the inverse operator, error estimate.
@article{TIMM_2013_19_1_a24,
     author = {I. V. Tabarintseva},
     title = {On an estimate for the modulus of continuity of a~nonlinear inverse problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {253--257},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/}
}
TY  - JOUR
AU  - I. V. Tabarintseva
TI  - On an estimate for the modulus of continuity of a~nonlinear inverse problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 253
EP  - 257
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/
LA  - ru
ID  - TIMM_2013_19_1_a24
ER  - 
%0 Journal Article
%A I. V. Tabarintseva
%T On an estimate for the modulus of continuity of a~nonlinear inverse problem
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 253-257
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/
%G ru
%F TIMM_2013_19_1_a24
I. V. Tabarintseva. On an estimate for the modulus of continuity of a~nonlinear inverse problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 253-257. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/