On an estimate for the modulus of continuity of a nonlinear inverse problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 253-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A reverse time problem is considered for a semilinear parabolic equation. Two-sided estimates are obtained for the norms of values of a nonlinear operator in terms of the norms of values of the corresponding linear operator. As a consequence, two-sided estimates are established for the modulus of continuity of a semilinear inverse problem in terms of the modulus of continuity of the corresponding linear problem.
Mots-clés : parabolic equation
Keywords: inverse problem, modulus of continuity of the inverse operator, error estimate.
@article{TIMM_2013_19_1_a24,
     author = {I. V. Tabarintseva},
     title = {On an estimate for the modulus of continuity of a~nonlinear inverse problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {253--257},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/}
}
TY  - JOUR
AU  - I. V. Tabarintseva
TI  - On an estimate for the modulus of continuity of a nonlinear inverse problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 253
EP  - 257
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/
LA  - ru
ID  - TIMM_2013_19_1_a24
ER  - 
%0 Journal Article
%A I. V. Tabarintseva
%T On an estimate for the modulus of continuity of a nonlinear inverse problem
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 253-257
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/
%G ru
%F TIMM_2013_19_1_a24
I. V. Tabarintseva. On an estimate for the modulus of continuity of a nonlinear inverse problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 253-257. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a24/

[1] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 262 pp. | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektno postavlennykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp.

[3] Ivanov V. K., Korolyuk T. I., “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 9:1 (1969), 30–41 | MR | Zbl

[4] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Izd. Mariiskogo gos. un-ta, Ioshkar-Ola, 1998, 292 pp.

[5] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968, 375 pp. | MR

[6] Strakhov V. N., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Differents. uravneniya, 6:8 (1970), 1490–1495 | Zbl

[7] Tabarintseva E. V., “Ob otsenke pogreshnosti metoda kvaziobrascheniya pri reshenii zadachi Koshi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki, 8:3 (2005), 259–271 | Zbl

[8] Tanana V. P., Tabarintseva E. V., “O metode priblizheniya kusochno-nepreryvnykh reshenii nelineinykh obratnykh zadach”, Sib. zhurn. vychisl. matematiki, 10:2 (2007), 221–228 | Zbl

[9] Tanana V. P., “O skhodimosti regulyarizovannykh reshenii nelineinykh operatornykh uravnenii”, Sib. zhurn. industr. matematiki, 6:3 (2003), 119–133 | MR | Zbl

[10] Tanana V. P., “Optimalnye po poryadku metody resheniya nelineinykh nekorrektno postavlennykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 16:2 (1976), 503–507 | MR

[11] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 312 pp. | MR | Zbl